REFERENCES
Albertsson, S., Giesl, P., Gudmundsson, S., and Hafstein,
S. (2020). Simplicial complex with approximate ro-
tational symmetry: A general class of simplicial com-
plexes. J. Comput. Appl. Math., 363:413–425.
Anderson, J. and Papachristodoulou, A. (2015). Advances
in computational Lyapunov analysis using sum-of-
squares programming. Discrete Contin. Dyn. Syst. Ser.
B, 20(8):2361–2381.
Bj
¨
ornsson, J., Giesl, P., Hafstein, S., Kellett, C., and Li,
H. (2014). Computation of continuous and piecewise
affine Lyapunov functions by numerical approxima-
tions of the Massera construction. In Proceedings
of the CDC, 53rd IEEE Conference on Decision and
Control, pages 5506–5511, Los Angeles (CA), USA.
Bj
¨
ornsson, J., Giesl, P., Hafstein, S., Kellett, C., and Li, H.
(2015). Computation of Lyapunov functions for sys-
tems with multiple attractors. Discrete Contin. Dyn.
Syst. Ser. A, 35(9):4019–4039.
Bj
¨
ornsson, J. and Hafstein, S. (2017). Efficient Lya-
punov function computation for systems with multiple
exponentially stable equilibria. Procedia Computer
Science, 108:655–664. Proceedings of the Interna-
tional Conference on Computational Science (ICCS),
Zurich, Switzerland, 2017.
Chesi, G. (2011). Domain of Attraction: Analysis and Con-
trol via SOS Programming. Lecture Notes in Control
and Information Sciences, vol. 415, Springer.
Doban, A. (2016). Stability domains computation and sta-
bilization of nonlinear systems: implications for bio-
logical systems. PhD thesis: Eindhoven University of
Technology.
Doban, A. and Lazar, M. (2016). Computation of Lyapunov
functions for nonlinear differential equations via a
Yoshizawa-type construction. IFAC-PapersOnLine,
49(18):29 – 34.
Giesl, P. (2007). Construction of Global Lyapunov Func-
tions Using Radial Basis Functions. Lecture Notes in
Math. 1904, Springer.
Giesl, P. and Hafstein, S. (2014). Revised CPA method to
compute Lyapunov functions for nonlinear systems. J.
Math. Anal. Appl., 410:292–306.
Giesl, P. and Hafstein, S. (2015a). Computation and veri-
fication of Lyapunov functions. SIAM J. Appl. Dyn.
Syst., 14(4):1663–1698.
Giesl, P. and Hafstein, S. (2015b). Review of computa-
tional methods for Lyapunov functions. Discrete Con-
tin. Dyn. Syst. Ser. B, 20(8):2291–2331.
Giesl, P. and Hafstein, S. (2021a). System specific trian-
gulations for the construction of CPA Lyapunov func-
tions. Discrete Contin. Dyn. Syst. Ser. B, 26(12):6027–
6046.
Giesl, P. and Hafstein, S. (2021b). Uniformly regular tri-
angulations for parameterizing Lyapunov functions.
In Proceedings of the 18th International Conference
on Informatics in Control, Automation and Robotics
(ICINCO), pages 549–557.
Giesl, P., Osborne, C., and Hafstein, S. (2020). Au-
tomatic determination of connected sublevel sets of
CPA Lyapunov functions. SIAM J. Appl. Dyn. Syst.,
19(2):1029–1056.
Gudmundsson, S. and Hafstein, S. (2015). Lyapunov func-
tion verification: MATLAB implementation. In Pro-
ceedings of the 1st Conference on Modelling, Identifi-
cation and Control of Nonlinear Systems (MICNON),
number 0235, pages 806–811.
Hafstein, S. (2004). A constructive converse Lyapunov the-
orem on exponential stability. Discrete Contin. Dyn.
Syst. Ser. A, 10(3):657–678.
Hafstein, S. (2013). Implementation of simplicial com-
plexes for CPA functions in C++11 using the Ar-
madillo linear algebra library. In Proceedings of the
3rd International Conference on Simulation and Mod-
eling Methodologies, Technologies and Applications
(SIMULTECH), pages 49–57, Reykjavik, Iceland.
Hafstein, S. (2019). Computational Science - ICCS 2019:
19th International Conference, Faro, Portugal, June
12-14, 2019, Proceedings, Part V, chapter Numerical
Analysis Project in ODEs for Undergraduate Students,
pages 412–434. Springer.
Hafstein, S., Kellett, C., and Li, H. (2014a). Computation
of Lyapunov functions for discrete-time systems using
the Yoshizawa construction. In Proceedings of 53rd
IEEE Conference on Decision and Control (CDC).
Hafstein, S., Kellett, C., and Li, H. (2014b). Continu-
ous and piecewise affine Lyapunov functions using the
Yoshizawa construction. In Proceedings of the 2014
American Control Conference (ACC), pages 548–553
(no. 0170), Portland (OR), USA.
Hafstein, S., Kellett, C., and Li, H. (2015). Computing con-
tinuous and piecewise affine Lyapunov functions for
nonlinear systems. J. Comput. Dyn, 2(2):227 – 246.
Hafstein, S. and Valfells, A. (2017). Study of dynamical
systems by fast numerical computation of Lyapunov
functions. In Proceedings of the 14th International
Conference on Dynamical Systems: Theory and Ap-
plications (DSTA), volume Mathematical and Numer-
ical Aspects of Dynamical System Analysis, pages
220–240.
Hafstein, S. and Valfells, A. (2019). Efficient computation
of Lyapunov functions for nonlinear systems by in-
tegrating numerical solutions. Nonlinear Dynamics,
97(3):1895–1910.
Hahn, W. (1967). Stability of Motion. Springer, Berlin.
Julian, P. (1999). A High Level Canonical Piecewise Lin-
ear Representation: Theory and Applications. PhD
thesis: Universidad Nacional del Sur, Bahia Blanca,
Argentina.
Julian, P., Guivant, J., and Desages, A. (1999). A
parametrization of piecewise linear Lyapunov func-
tions via linear programming. Int. J. Control, 72(7-
8):702–715.
Kamyar, R. and Peet, M. (2015). Polynomial optimization
with applications to stability analysis and control – an
alternative to sum of squares. Discrete Contin. Dyn.
Syst. Ser. B, 20(8):2383–2417.
Khalil, H. (2002). Nonlinear Systems. Pearson, 3. edition.
Li, H., Hafstein, S., and Kellett, C. (2015). Computation of
continuous and piecewise affine Lyapunov functions
ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics
128