Reviews  Neurology. 12  (1),  15-27.  Available 
from: https://doi.org/10.1038/nrneurol.2015.225. 
Available from: doi: 10.1038/nrneurol.2015.225. 
Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., 
Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., 
Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, 
V.  S.,  Donohue,  M.  C.  &  Trojanowski,  J.  Q.  (2013) 
Tracking pathophysiological  processes  in Alzheimer's 
disease:  an  updated  hypothetical  model  of  dynamic 
biomarkers. The  Lancet  Neurology. 12  (2),  207-216. 
Available 
from: https://www.sciencedirect.com/science/article/pi
i/S1474442212702910.  Available  from: 
doi: https://doi.org/10.1016/S1474-4422(12)70291-0. 
Kashyap, G., Bapat, D., Das, D., Gowaikar, R., Amritkar, 
R. E., Rangarajan, G., Ravindranath, V. & Ambika, G. 
(2019)  Synapse  loss  and  progress  of  Alzheimer’s 
disease  -A  network  model. Scientific  Reports. 9  (1), 
6555.10.1038/s41598-019-43076-y. 
Linert,  W.,  Herlinger,  E.,  Jameson,  R.  F.,  Kienzl,  E., 
Jellinger, K. & Youdim, M. B. H. (1996) Dopamine, 6-
hydroxydopamine, iron, and dioxygen — their mutual 
interactions  and  possible  implication  in  the 
development  of  Parkinson's  disease. Biochimica  Et 
Biophysica  Acta  (BBA)  -  Molecular  Basis  of 
Disease. 1316  (3),  160-168.  Available 
from: https://www.sciencedirect.com/science/article/pi
i/0925443996000208.  Available  from: 
doi: https://doi.org/10.1016/0925-4439(96)00020-8. 
Mather,  M.  (2021)  Noradrenaline  in  the  aging  brain: 
Promoting  cognitive  reserve  or  accelerating 
Alzheimer's  disease? Seminars  in  Cell  & 
Developmental  Biology. 116  108-124.  Available 
from: https://www.sciencedirect.com/science/article/pi
i/S1084952121001221.  Available  from: 
doi: https://doi.org/10.1016/j.semcdb.2021.05.013. 
Mather,  M.,  Gutchess,  A.  &  Thomas,  A.  E.  (2019)  How 
arousal-related  neurotransmitter  systems  compensate 
for  age-related  decline. The  Cambridge  Handbook  of 
Cognitive Aging: A Life Course Perspective. 
McMillan, P. J., White, S. S., Franklin, A., Greenup, J. L., 
Leverenz,  J.  B.,  Raskind,  M.  A.  &  Szot,  P.  (2011) 
Differential  response  of  the  central  noradrenergic 
nervous system to the loss of locus coeruleus neurons 
in  Parkinson's  disease  and  Alzheimer's  disease. Brain 
Research. 1373  240-252.  Available 
from: https://www.sciencedirect.com/science/article/pi
i/S0006899310026545.  Available  from: 
doi: https://doi.org/10.1016/j.brainres.2010.12.015. 
Moret,  C.  &  Briley,  M.  (2011)  The  importance  of 
norepinephrine  in  depression. Neuropsychiatric 
Disease  and  Treatment. 7  9-13.  Available 
from: https://pubmed.ncbi.nlm.nih.gov/21750623 https
://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131098/. 
Available from: doi: 10.2147/NDT.S19619. 
Murphy,  M.  P.  &  LeVine,  H.,  3rd.  (2010)  Alzheimer's 
disease  and  the  amyloid-beta  peptide. Journal  of 
Alzheimer's Disease: JAD. 19 (1), 311-323. Available 
from: https://pubmed.ncbi.nlm.nih.gov/20061647 https
://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813509/. 
Available from: doi: 10.3233/JAD-2010-1221. 
Nam, E., Derrick, J. S., Lee, S., Kang, J., Han, J., Lee, S. J. 
C.,  Chung,  S.  W.  &  Lim,  M.  H.  (2018)  Regulatory 
Activities  of  Dopamine  and  Its  Derivatives  toward 
Metal-Free  and  Metal-Induced  Amyloid-β 
Aggregation,  Oxidative  Stress,  and  Inflammation  in 
Alzheimer’s  Disease. ACS  Chemical  Neuroscience. 9 
(11),  2655-2666.  Available 
from: https://doi.org/10.1021/acschemneuro.8b00122. 
Available from: doi: 10.1021/acschemneuro.8b00122. 
Ni,  Y.,  Zhao,  X.,  Bao,  G.,  Zou,  L.,  Teng,  L.,  Wang,  Z., 
Song, M., Xiong, J., Bai, Y. & Pei, G. (2006) Activation 
of β2-adrenergic receptor stimulates γ-secretase activity 
and  accelerates  amyloid  plaque  formation. Nature 
Medicine. 12  (12),  1390-1396.  Available 
from: https://doi.org/10.1038/nm1485. Available from: 
doi: 10.1038/nm1485. 
Nobili, A., Latagliata, E.  C.,  Viscomi, M.  T.,  Cavallucci, 
V., Cutuli, D.,  Giacovazzo, G.,  Krashia,  P.,  Rizzo, F. 
R., Marino, R., Federici, M., De Bartolo, P., Aversa, D., 
Dell’Acqua, M. C., Cordella, A., Sancandi, M., Keller, 
F.,  Petrosini,  L.,  Puglisi-Allegra,  S.,  Mercuri,  N.  B., 
Coccurello,  R.,  Berretta,  N.  &  D’Amelio,  M.  (2017) 
Dopamine  neuronal  loss  contributes  to  memory  and 
reward  dysfunction  in  a  model  of  Alzheimer’s 
disease. Nature  Communications. 8  (1),  14727. 
Available 
from: https://doi.org/10.1038/ncomms14727. 
Available from: doi: 10.1038/ncomms14727. 
Noda,  S.,  Sato,  S.,  Fukuda,  T.,  Tada,  N.  &  Hattori,  N. 
(2020) Aging-related motor function and dopaminergic 
neuronal  loss  in  C57BL/6  mice. Molecular  Brain. 13 
(1),  46.  Available 
from: https://doi.org/10.1186/s13041-020-00585-6. 
Available from: doi: 10.1186/s13041-020-00585-6. 
Pan, X., Kaminga, A. C., Wen, S. W., Wu, X., 
Acheampong,  K.  &  Liu,  A.  (2019)  Dopamine  and 
Dopamine  Receptors  in  Alzheimer's  Disease:  A 
Systematic  Review  and  Network  Meta-
Analysis. Frontiers  in  Aging  Neuroscience. 11  175. 
Available 
from: https://pubmed.ncbi.nlm.nih.gov/31354471 https
://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637734/. 
Available from: doi: 10.3389/fnagi.2019.00175. 
Ranjbar-Slamloo,  Y.  &  Fazlali,  Z.  (2020)  Dopamine  and 
Noradrenaline in the Brain; Overlapping or Dissociate 
Functions? Frontiers  in  Molecular  Neuroscience. 12 
334.  Available 
from: https://www.frontiersin.org/article/10.3389/fnm
ol.2019.00334. 
Reprinted  from  “NA  synthesis  and  export”,  by 
BioRender.com  (2021).  Retrieved  from: 
https://app.biorender.com/illustrations/602cf1f6c8e56
800a3c62566 
Seals, D. R. & Esler, M. D. (2000) Human ageing and the 
sympathoadrenal  system. The  Journal  of 
Physiology. 528  407-417.  Available 
from: https://pubmed.ncbi.nlm.nih.gov/11060120 https
://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270159/.