Reviews Neurology. 12 (1), 15-27. Available
from: https://doi.org/10.1038/nrneurol.2015.225.
Available from: doi: 10.1038/nrneurol.2015.225.
Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C.,
Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P.,
Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz,
V. S., Donohue, M. C. & Trojanowski, J. Q. (2013)
Tracking pathophysiological processes in Alzheimer's
disease: an updated hypothetical model of dynamic
biomarkers. The Lancet Neurology. 12 (2), 207-216.
Available
from: https://www.sciencedirect.com/science/article/pi
i/S1474442212702910. Available from:
doi: https://doi.org/10.1016/S1474-4422(12)70291-0.
Kashyap, G., Bapat, D., Das, D., Gowaikar, R., Amritkar,
R. E., Rangarajan, G., Ravindranath, V. & Ambika, G.
(2019) Synapse loss and progress of Alzheimer’s
disease -A network model. Scientific Reports. 9 (1),
6555.10.1038/s41598-019-43076-y.
Linert, W., Herlinger, E., Jameson, R. F., Kienzl, E.,
Jellinger, K. & Youdim, M. B. H. (1996) Dopamine, 6-
hydroxydopamine, iron, and dioxygen — their mutual
interactions and possible implication in the
development of Parkinson's disease. Biochimica Et
Biophysica Acta (BBA) - Molecular Basis of
Disease. 1316 (3), 160-168. Available
from: https://www.sciencedirect.com/science/article/pi
i/0925443996000208. Available from:
doi: https://doi.org/10.1016/0925-4439(96)00020-8.
Mather, M. (2021) Noradrenaline in the aging brain:
Promoting cognitive reserve or accelerating
Alzheimer's disease? Seminars in Cell &
Developmental Biology. 116 108-124. Available
from: https://www.sciencedirect.com/science/article/pi
i/S1084952121001221. Available from:
doi: https://doi.org/10.1016/j.semcdb.2021.05.013.
Mather, M., Gutchess, A. & Thomas, A. E. (2019) How
arousal-related neurotransmitter systems compensate
for age-related decline. The Cambridge Handbook of
Cognitive Aging: A Life Course Perspective.
McMillan, P. J., White, S. S., Franklin, A., Greenup, J. L.,
Leverenz, J. B., Raskind, M. A. & Szot, P. (2011)
Differential response of the central noradrenergic
nervous system to the loss of locus coeruleus neurons
in Parkinson's disease and Alzheimer's disease. Brain
Research. 1373 240-252. Available
from: https://www.sciencedirect.com/science/article/pi
i/S0006899310026545. Available from:
doi: https://doi.org/10.1016/j.brainres.2010.12.015.
Moret, C. & Briley, M. (2011) The importance of
norepinephrine in depression. Neuropsychiatric
Disease and Treatment. 7 9-13. Available
from: https://pubmed.ncbi.nlm.nih.gov/21750623 https
://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131098/.
Available from: doi: 10.2147/NDT.S19619.
Murphy, M. P. & LeVine, H., 3rd. (2010) Alzheimer's
disease and the amyloid-beta peptide. Journal of
Alzheimer's Disease: JAD. 19 (1), 311-323. Available
from: https://pubmed.ncbi.nlm.nih.gov/20061647 https
://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813509/.
Available from: doi: 10.3233/JAD-2010-1221.
Nam, E., Derrick, J. S., Lee, S., Kang, J., Han, J., Lee, S. J.
C., Chung, S. W. & Lim, M. H. (2018) Regulatory
Activities of Dopamine and Its Derivatives toward
Metal-Free and Metal-Induced Amyloid-β
Aggregation, Oxidative Stress, and Inflammation in
Alzheimer’s Disease. ACS Chemical Neuroscience. 9
(11), 2655-2666. Available
from: https://doi.org/10.1021/acschemneuro.8b00122.
Available from: doi: 10.1021/acschemneuro.8b00122.
Ni, Y., Zhao, X., Bao, G., Zou, L., Teng, L., Wang, Z.,
Song, M., Xiong, J., Bai, Y. & Pei, G. (2006) Activation
of β2-adrenergic receptor stimulates γ-secretase activity
and accelerates amyloid plaque formation. Nature
Medicine. 12 (12), 1390-1396. Available
from: https://doi.org/10.1038/nm1485. Available from:
doi: 10.1038/nm1485.
Nobili, A., Latagliata, E. C., Viscomi, M. T., Cavallucci,
V., Cutuli, D., Giacovazzo, G., Krashia, P., Rizzo, F.
R., Marino, R., Federici, M., De Bartolo, P., Aversa, D.,
Dell’Acqua, M. C., Cordella, A., Sancandi, M., Keller,
F., Petrosini, L., Puglisi-Allegra, S., Mercuri, N. B.,
Coccurello, R., Berretta, N. & D’Amelio, M. (2017)
Dopamine neuronal loss contributes to memory and
reward dysfunction in a model of Alzheimer’s
disease. Nature Communications. 8 (1), 14727.
Available
from: https://doi.org/10.1038/ncomms14727.
Available from: doi: 10.1038/ncomms14727.
Noda, S., Sato, S., Fukuda, T., Tada, N. & Hattori, N.
(2020) Aging-related motor function and dopaminergic
neuronal loss in C57BL/6 mice. Molecular Brain. 13
(1), 46. Available
from: https://doi.org/10.1186/s13041-020-00585-6.
Available from: doi: 10.1186/s13041-020-00585-6.
Pan, X., Kaminga, A. C., Wen, S. W., Wu, X.,
Acheampong, K. & Liu, A. (2019) Dopamine and
Dopamine Receptors in Alzheimer's Disease: A
Systematic Review and Network Meta-
Analysis. Frontiers in Aging Neuroscience. 11 175.
Available
from: https://pubmed.ncbi.nlm.nih.gov/31354471 https
://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637734/.
Available from: doi: 10.3389/fnagi.2019.00175.
Ranjbar-Slamloo, Y. & Fazlali, Z. (2020) Dopamine and
Noradrenaline in the Brain; Overlapping or Dissociate
Functions? Frontiers in Molecular Neuroscience. 12
334. Available
from: https://www.frontiersin.org/article/10.3389/fnm
ol.2019.00334.
Reprinted from “NA synthesis and export”, by
BioRender.com (2021). Retrieved from:
https://app.biorender.com/illustrations/602cf1f6c8e56
800a3c62566
Seals, D. R. & Esler, M. D. (2000) Human ageing and the
sympathoadrenal system. The Journal of
Physiology. 528 407-417. Available
from: https://pubmed.ncbi.nlm.nih.gov/11060120 https
://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270159/.