head. These are on the one hand the generation of a
stable and focused aerosol beam, and on the other
hand the prevention of wetting of the inner nozzle
wall by the aerosol. The fundamental operating
parameters ensuring these conditions are found by
CFD simulations. In a first step the relationship
between the mass flows of the sheath gas and the
aerosol and the wetting of the inner wall is
investigated leading to an operating point at
Re = 1200 ensuring a non-wetting condition. Since a
time-continous operation of the print head is a
prerequisite of a reliable function of aerosol-on-
demand printing, steady-state as well as transient
simulations are performed to investigate for time
dependency of the solutions. The transient
simulations give identical results as the steady-state
simulations concerning the position of the beam focus
as well as the velocity distribution. Thus, all
requirements for aerosol-on-demand printing are
fulfilled and the newly developed concept has been
validated by simulation.
In future studies, the simulative findings will be
experimentally evaluated and validated by realising
the design-for-manufacture as experimental setup.
REFERENCES
Ansys 2021. Ansys Fluent User’s Guide, Release 2021 R2,
ANSYS, Inc. Canonsburg, PA, USA
Chang, J.S., A.F. Facchetti, and R. Reuss. 2017. A circuits
and systems perspective of organic/printed electronics:
Review, challenges, and contemporary and emerging
design approaches. IEEE Journal on emerging and
selected topics in circuits and systems 7, : 1–21. doi:
10.1109/JETCAS.2017.2673863.
Ganz, S., H.M. Sauer, S. Weißenseel, J. Zembron, R. Tone,
E. Dörsam, M. Schaefer, M. Schulz-Ruthenberg. 2016.
Printing and Processing Techniques. Nisato, G., Lupo,
D., and Ganz, S. (editors): Organic and Printed
Electronics: Fundamentals and Applications: 48-116.
Singapore: Pan Stanford Publishing.
Gupta, A.A., A. Bolduc, S. G. Cloutier and R. Izquierdo.
2016. Aerosol Jet Printing for printed electronics rapid
prototyping, IEEE International Symposium on
Circuits and Systems (ISCAS), Montreal, QC: 866-869,
doi: 10.1109/ISCAS.2016.7527378.
Guha, A. and Smiley, B. 2010. Experiment and analysis for
an improved design of the inlet and nozzle in Tesla disc
turbines. Proceedings of The Institution of Mechanical
Engineers Part A-journal of Power and Energy - PROC
INST MECH ENG A-J POWER 224. doi:
10.1243/09576509JPE818.
Hedges, M. and A. B. Marin. 3D Aerosol Jet Printing -
Adding Electronics Functionality to RP/RM. Direct
Digital Manufacturing Conference (Berlin) 2012. url:
https://optomec.com/wp- content/uploads/2014/04/Opt
omec_NEOTECH_ DDMC_3D_Aerosol_Jet_Printing
.pdf. (accessed: 24.02.2020).
Magdassi, S. 2010. The Chemistry of Inkjet Inks. Singapore:
World Scientific Publishing.
Menter, F.R. 1994. Two-Equation Eddy-Viscosity
Turbulence Models for Engineering Applications.
AIAA Journal. 32(8): 1598–1605.
Mette, A., P. L. Richter, M. Hörteis, S. W. Glunz. 2007.
Metal Aerosol Jet Printing for Solar Cell Metallization,
Progress in Photovoltaics 15, 621–627. doi:
10.1002/pip.759.
Neotech. 2021. 3D Printed Electronics applications realised
by Neotech AMT. url: https://neotech-amt.com/
applications. (accessed: 19.10.2021).
Schlichting, H. and K. Gersten. 2006. Grenzschichttheorie.
10. Auflage. Berlin, Heidelberg: Springer. doi:
10.1007/3-540-32985-4.
Sieber, I. R. Thelen, and U. Gengenbach. 2020. Assessment
of high-resolution 3D printed optics for the use case of
rotation optics. Opt. Express 28: 13423-13431.
Sieber, I., R. Thelen, and U. Gengenbach. 2021.
Enhancement of High-Resolution 3D Inkjet-printing of
Optical Freeform Surfaces Using Digital Twins.
Micromachines 12(1): 35. https://doi.org/10.3390/mi1
2010035.
Sieber, I., Zeltner, D., Ungerer, M., Wenka, A., Walter, T.,
Gengenbach, U. (2022). Design and experimental setup
of a new concept of an aerosol-on-demand print head.
Aerosol Science and Technology. Taylor & Francis.
DOI: 10.1080/02786826.2021.2022094
Sirringhaus, H. and T. Shimoda. 2003. Inkjet Printing of
Functional Materials. MRS Bulletin 28(11): 802–806.
doi: 10.1557/mrs2003.228.
Wilcox, D.C. 2006. Turbulenc Modelling for CFD, 3rd
edition). La Canada, California: DCW Industries, Inc.
Ungerer, M., A. Hofmann, R. Scharnowell, U. Gengenbach,
I. Sieber, and A. Wenka. 2018. Druckkopf und
Druckverfahren [Print head and printing method].
Patent: DE 10 2018 103 049.5.
Ungerer, M. 2020. Neue Methodik zur Optimierung von
Druckverfahren fur die Herstellung funktionaler
Mikrostrukturen und hybrider elektronischer
Schaltungen [New methodology for optimising printing
processes for the production of functional
microstructures and hybrid electronic circuits].
Dissertation, Karlsruhe, Germany: Karlsruhe Institute
of Technology (KIT).
Zeltner, D. 2020. Auslegung und Evaluierung einer
Dosiereinheit zur additive Fertigung funktionaler
Strukturen [Design and evaluation of a dispensing unit
for additive manufacturing of functional structures].
Karlsruhe: Karlsruhe Institute of Technology, Institute
for Automation and Applied Informatics.