ACKNOWLEDGMENTS
This project received funding from the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded
by the Deutsche Forschungsgemeinschaft (DFG) –
SFB 1119 CROSSING/236615297 and GRK 2050 Pri-
vacy & Trust/251805230, and by the German Federal
Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the
Arts within ATHENE.
REFERENCES
Alhassan, M. Y., G
¨
unther, D., Kiss, A., and Schneider,
T. (2020). Efficient and scalable universal circuits.
J. Cryptology.
Alletto, S., Cucchiara, R., Del Fiore, G., Mainetti, L.,
Mighali, V., Patrono, L., and Serra, G. (2015). An
indoor location-aware system for an IoT-based smart
museum. IEEE Internet of Things Journal.
Asharov, G., Lindell, Y., Schneider, T., and Zohner, M.
(2013). More efficient oblivious transfer and exten-
sions for faster secure computation. In CCS.
Bahl, P. and Padmanabhan, V. N. (2000). RADAR: An in-
building RF-based user location and tracking system.
In INFOCOM.
Barsocchi, P., Calabr
`
o, A., Crivello, A., Daoudagh, S.,
Furfari, F., Girolami, M., and Marchetti, E. (2021).
COVID-19 & privacy: Enhancing of indoor localiza-
tion architectures towards effective social distancing.
Array.
Beaver, D., Micali, S., and Rogaway, P. (1990). The round
complexity of secure protocols. In STOC.
Bellare, M., Hoang, V. T., Keelveedhi, S., and Rogaway, P.
(2013). Efficient garbling from a fixed-key blockcipher.
In S&P.
Bellovin, S. M., Hutchins, R. M., Jebara, T., and Zimmeck,
S. (2013). When enough is enough: Location tracking,
mosaic theory, and machine learning. NYU Journal of
Law & Liberty.
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L.,
Rindal, P., and Scholl, P. (2019a). Efficient two-round
OT extension and silent non-interactive secure compu-
tation. In CCS.
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., and
Scholl, P. (2019b). Efficient pseudorandom correlation
generators: Silent OT extension and more. In Advances
in Cryptology – CRYPTO.
Burra, S. S., Larraia, E., Nielsen, J. B., Nordholt, P. S., Or-
landi, C., Orsini, E., Scholl, P., and Smart, N. P. (2021).
High-performance multi-party computation for binary
circuits based on oblivious transfer. J. Cryptology.
Capkun, S., Ganeriwal, S., Anjum, F., and Srivastava, M.
(2011). Secure RSS-based localization in sensor net-
works. Technical Report/ETH Zurich, Department of
Computer Science.
Chawla, K., McFarland, C., Robins, G., and Shope, C.
(2013). Real-time RFID localization using RSS. In
ICL-GNSS.
Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razen-
shteyn, I. P., and Riazi, M. S. (2020). SANNS: Scaling
up secure approximate k-nearest neighbors search. In
USENIX Security.
Chen, L., Kuusniemi, H., Chen, Y., Pei, L., Kr
¨
oger, T., and
Chen, R. (2011). Information filter with speed detec-
tion for indoor Bluetooth positioning. In ICL-GNSS.
Chen, L., Thombre, S., J
¨
arvinen, K., Lohan, E. S., Al
´
en-
Savikko, A., Lepp
¨
akoski, H., Bhuiyan, M. Z. H., Bu-
Pasha, S., Ferrara, G. N., Honkala, S., Lindqvist, J.,
Ruotsalainen, L., Korpisaari, P., and Kuusniemi, H.
(2017). Robustness, security and privacy in location-
based services for future IoT: A survey. IEEE Access.
Demmler, D., Schneider, T., and Zohner, M. (2015). ABY –
a framework for efficient mixed-protocol secure two-
party computation. In NDSS.
Gilboa, N. (1999). Two party RSA key generation. In
Advances in Cryptology – CRYPTO.
Goldreich, O., Micali, S., and Wigderson, A. (1987). How
to play any mental game. In STOC.
Guan, T., Fang, L., Dong, W., Hou, Y., and Qiao, C. (2017).
Indoor localization with asymmetric grid-based filters
in large areas utilizing smartphones. In IEEE ICC.
Haeberlen, A., Flannery, E., Ladd, A. M., Rudys, A., Wal-
lach, D. S., and Kavraki, L. E. (2004). Practical robust
localization over large-scale 802.11 wireless networks.
In MobiCom.
Hakkarainen, A., Werner, J., Costa, M., Lepp
¨
anen, K., and
Valkama, M. (2015). High-efficiency device localiza-
tion in 5G ultra-dense networks: Prospects and en-
abling technologies. In IEEE Vehicular Technology
Conference.
Hallgren, P., Orlandi, C., and Sabelfeld, A. (2017). Pri-
vatePool: Privacy-preserving ridesharing. In IEEE
CSF.
He, S., Lin, W., and Chan, S.-H. G. (2017). Indoor localiza-
tion and automatic fingerprint update with altered AP
signals. IEEE Transactions on Mobile Computing.
Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. (2003).
Extending oblivious transfers efficiently. In Advances
in Cryptology – CRYPTO.
J
¨
arvinen, K., Kiss,
´
A., Schneider, T., Tkachenko, O., and
Yang, Z. (2018). Faster privacy-preserving location
proximity schemes. In CANS.
J
¨
arvinen, K., Lepp
¨
akoski, H., Lohan, E. S., Richter, P.,
Schneider, T., Tkachenko, O., and Yang, Z. (2019).
PILOT: Practical privacy-preserving Indoor Localiza-
tion using OuTsourcing. In EuroS&P.
Kolesnikov, V. and Schneider, T. (2008). Improved garbled
circuit: Free XOR gates and applications. In ICALP.
Konstantinidis, A., Chatzimilioudis, G., Zeinalipour-Yazti,
D., Mpeis, P., Pelekis, N., and Theodoridis, Y. (2016).
Privacy-preserving indoor localization on smartphones.
In IEEE International Conference on Data Engineer-
ing.
FAPRIL: Towards Faster Privacy-preserving Fingerprint-based Localization
119