Large Spatial Databases with Noise. Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining, 226–231.
Fischler, M. A., & Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with
applications to image analysis and automated
cartography. Communications of the ACM, 24(6), 381–
395.
Gai, J., Xiang, L., & Tang, L. (2021). Using a depth camera
for crop row detection and mapping for under-canopy
navigation of agricultural robotic vehicle. Computers and
Electronics in Agriculture, 188, 106301.
García-Santillán, I., Guerrero, J. M., Montalvo, M., &
Pajares, G. (2018). Curved and straight crop row
detection by accumulation of green pixels from images
in maize fields. Precision Agriculture, 19(1), 18–41.
Gonzalez-de-Santos, P., Fernández, R., Sepúlveda, D.,
Navas, E., Emmi, L., & Armada, M. (2020). Field Robots
for Intelligent Farms—Inhering Features from Industry.
Agronomy, 10(11), 1638.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual
Learning for Image Recognition. ArXiv:1512.03385
[Cs].
Hough, P. V. C. (1962). Method and means for recognizing
complex patterns. (US Patent Office Patent No.
3069654).
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., & Adam, H. (2017).
MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications. ArXiv:1704.04861 [Cs].
Jiang, G. & Zhao, C. (2010). A vision system based crop rows
for agricultural mobile robot. 2010 International
Conference on Computer Application and System
Modeling (ICCASM 2010), V11-142-V11-145.
Jiang, G., Wang, Z., & Liu, H. (2015). Automatic detection
of crop rows based on multi-ROIs. Expert Systems with
Applications, 42(5), 2429–2441.
Kanagasingham, S., Ekpanyapong, M., & Chaihan, R.
(2020). Integrating machine vision-based row guidance
with GPS and compass-based routing to achieve
autonomous navigation for a rice field weeding robot.
Precision Agriculture, 21(4), 831–855.
Lan, Y., Geng, L., Li, W., Ran, W., Yin, X., & Yi, L. (2018).
Development of a robot with 3D perception for accurate
row following in vineyard. International Journal of
Precision Agricultural Aviation, 1(1), 14–21.
Lucid Vision Labs. (2022). Lucid Vision Labs.
https://thinklucid.com/
Mavridou, E., Vrochidou, E., Papakostas, G. A., Pachidis, T.,
& Kaburlasos, V. G. (2019). Machine Vision Systems in
Precision Agriculture for Crop Farming. Journal of
Imaging, 5(12), 89.
Oliveira, L. F. P., Moreira, A. P., & Silva, M. F. (2021).
Advances in Agriculture Robotics: A State-of-the-Art
Review and Challenges Ahead. Robotics, 10(2), 52.
Otsu, N. (1979). A Threshold Selection Method from Gray-
Level Histograms. IEEE Transactions on Systems, Man,
and Cybernetics, 9(1), 62–66.
Ponnambalam, V. R., Bakken, M., Moore, R. J. D., Glenn
Omholt Gjevestad, J., & Johan From, P. (2020).
Autonomous Crop Row Guidance Using Adaptive
Multi-ROI in Strawberry Fields. Sensors, 20(18), 5249.
Rakhmatulin, I., & Andreasen, C. (2020). A Concept of a
Compact and Inexpensive Device for Controlling Weeds
with Laser Beams. Agronomy, 10(10), 1616.
Redmon, J. (2013). Darknet: Open Source Neural Networks
in C. http://pjreddie.com/darknet/
Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental
Improvement. ArXiv:1804.02767 [Cs].
Romeo, J., Pajares, G., Montalvo, M., Guerrero, J. M.,
Guijarro, M., & Ribeiro, A. (2012). Crop Row Detection
in Maize Fields Inspired on the Human Visual
Perception. The Scientific World Journal, 2012, 1–10.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image
Segmentation. ArXiv:1505.04597 [Cs].
Sarmento, J., Silva Aguiar, A., Neves dos Santos, F., &
Sousa, A. J. (2021). Autonomous Robot Visual-Only
Guidance in Agriculture Using Vanishing Point
Estimation. In G. Marreiros, F. S. Melo, N. Lau, H. Lopes
Cardoso, & L. P. Reis (Eds.), Progress in Artificial
Intelligence (Vol. 12981, pp. 3–15). Springer
International Publishing.
Shalal, N., Low, T., McCarthy, C., & Hancock, N. (2013). A
review of autonomous navigation systems in agricultural
environments.
Wei, C., Li, H., Shi, J., Zhao, G., Feng, H., & Quan, L.
(2022). Row anchor selection classification method for
early-stage crop row-following. Computers and
Electronics in Agriculture, 192, 106577.
Simon, N. A., & Min, C. H. (2020). Neural Network Based
Corn Field Furrow Detection for Autonomous
Navigation in Agriculture Vehicles. 2020 IEEE
International IOT, Electronics and Mechatronics
Conference (IEMTRONICS), 1–6.
WeLASER. (2022). WeLASER Project: Eco-Innovative
weeding with laser. https://welaser-project.eu/
Winterhalter, W., Fleckenstein, F. V., Dornhege, C., &
Burgard, W. (2018). Crop Row Detection on Tiny Plants
With the Pattern Hough Transform. IEEE Robotics and
Automation Letters, 3(4), 3394–3401.
Woebbecke, D. M., G. E. Meyer, K. Von Bargen, & D. A.
Mortensen. (1995). Color Indices for Weed Identification
Under Various Soil, Residue, and Lighting Conditions.
Transactions of the ASAE, 38(1), 259–269.
Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A
decimal code for the growth stages of cereals. Weed
Research, 14(6), 415–421.
Zhang, X., Li, X., Zhang, B., Zhou, J., Tian, G., Xiong, Y., &
Gu, B. (2018). Automated robust crop-row detection in
maize fields based on position clustering algorithm and
shortest path method. Computers and Electronics in
Agriculture, 154, 165–175.
Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid
Scene Parsing Network. ArXiv:1612.01105 [Cs].
Zhao, X., Tong, C., Pang, X., Wang, Z., Guo, Y., Du, F., &
Wu, R. (2012). Functional mapping of ontogeny in
flowering plants. Briefings in Bioinformatics, 13(3),
317–328.