All our tools and results, including tests results
from both reference runs and cryptographic function
dataset, are publicly available
5
.
ACKNOWLEDGEMENT
Authors were supported by Czech Science Founda-
tion project (GA20-03426S). This work was partially
supported by the European cybersecurity pilot Cy-
berSec4Europe. Computational resources were sup-
plied by the project ”e-Infrastruktura CZ” (e-INFRA
CZ LM2018140) supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic. Com-
putational resources were provided by the ELIXIR-
CZ project (LM2018131), part of the international
ELIXIR infrastructure.
REFERENCES
Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., and Szepi-
eniec, A. (2020). Design of symmetric-key primitives
for advanced cryptographic protocols. IACR Transac-
tions on Symmetric Cryptology, 2020(3):1–45.
Bernstein, D. J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P.,
Heninger, N., Lange, T., and Van Someren, N. (2013).
Factoring RSA keys from certified smart cards: Cop-
persmith in the wild. In International Conference on
the Theory and Application of Cryptology and Infor-
mation Security, pages 341–360. Springer.
Biham, E. and Shamir, A. (2012). Differential cryptanalysis
of the data encryption standard. Springer Science &
Business Media.
Biryukov, A. and Velichkov, V. (2014). Automatic search
for differential trails in ARX ciphers. In Cryptogra-
phers’ Track at the RSA Conference, pages 227–250.
Springer.
Brown, R. G., Eddelbuettel, D., and Bauer, D. (2013).
Dieharder: A random number test suite. Open Source
software library, under development.
Caelli, W. et al. (1998). Crypt-X suite.
Doty-Humphrey, C. (2014). Practically Random: Specific
tests in PractRand.
Eskandari, Z., Kidmose, A. B., K
¨
olbl, S., and Tiessen, T.
(2018). Finding integral distinguishers with ease. In
IACR Cryptol. ePrint Arch.
Heninger, N., Durumeric, Z., Wustrow, E., and Halderman,
J. A. (2012). Mining your ps and qs: Detection of
widespread weak keys in network devices. In Pre-
sented as part of the 21st USENIX Security Sympo-
sium (USENIX Security 12), pages 205–220.
Hernandez-Castro, J. and Barrero, D. F. (2017). Evolution-
ary generation and degeneration of randomness to as-
sess the indepedence of the ent test battery. In 2017
5
https://crocs.fi.muni.cz/public/papers/secmargins
secrypt22
IEEE Congress on Evolutionary Computation (CEC),
pages 1420–1427. IEEE.
Hommel, G. (1988). A stagewise rejective multiple
test procedure based on a modified bonferroni test.
Biometrika, 75:383–386.
Jones, G. (2007). gjrand random numbers.
Kaminsky, A. (2019). Testing the randomness of crypto-
graphic function mappings. IACR Cryptology ePrint
Archive, page 78.
Kaminsky, A. and Sorrell, J. (2013). CryptoStat: a Bayesian
Statistical Testing Framework for Block Ciphers and
MACs. Rochester Institute of Technology, Rochester,
NY.
Ketamine (2018). Multiple vulnerabilities in Se-
cureRandom(), numerous cryptocurrency products
affected. https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2018-April/015873.html.
Knuth, D. E. (1969). The Art of Computer Programming,
volume 2. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, first edition.
Kub
´
ıcek, K., Novotn
`
y, J.,
ˇ
Svenda, P., and Ukrop, M. (2016).
New results on reduced-round tiny encryption algo-
rithm using genetic programming. INFOCOMMUNI-
CATIONS JOURNAL, 8(1):2–9.
L’Ecuyer, P. and Simard, R. (2007). TestU01: A C Li-
brary for Empirical Testing of Random Number Gen-
erators. ACM Transactions on Mathematical Software
(TOMS), 33(4).
Marsaglia, G. (1995). Diehard: a battery of tests of random-
ness.
Mascagni, M. and Srinivasan, A. (2000). Algorithm 806:
SPRNG: A scalable library for pseudorandom num-
ber generation. ACM Transactions on Mathematical
Software (TOMS), 26(3):436–461.
Matsui, M. (1993). Linear cryptanalysis method for des ci-
pher. In Workshop on the Theory and Application of of
Cryptographic Techniques, pages 386–397. Springer.
Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A.
(1996). Handbook of applied cryptography. CRC
Press.
Murphy, S. (2000). The power of NIST’s statistical testing
of AES candidates. Preprint. January, 17.
O’Neill, M. E. (2014). Pcg: A family of simple fast
space-efficient statistically good algorithms for ran-
dom number generation. Technical Report HMC-CS-
2014-0905, Harvey Mudd College, Claremont, CA.
Piras, C. (2004). RaBiGeTe Documentation.
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker,
E., Leigh, S., Levenson, M., Vangel, M., Banks, D.,
Heckert, A., Dray, J., and Vo, S. (2010). A Statisti-
cal Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications.
Schindler, W. and Killmann, W. (2002). Evaluation crite-
ria for true (physical) random number generators used
in cryptographic applications. In International Work-
shop on Cryptographic Hardware and Embedded Sys-
tems, pages 431–449. Springer.
Soto, J. (1999). Randomness testing of the AES candi-
date algorithms. NIST. Available via csrc. nist. gov,
page 14.
Large-scale Randomness Study of Security Margins for 100+ Cryptographic Functions
145