Case, M. (2003). A beginner’s guide to the general number
field sieve. Oregon State University, ECE575 Data
Security and Cryptography Project.
Cavallar, S., Dodson, B., Lenstra, A. K., Lioen, W., Mont-
gomery, P. L., Murphy, B., Te Riele, H., Aardal, K.,
Gilchrist, J., Guillerm, G., et al. (2000). Factoriza-
tion of a 512-bit rsa modulus. In International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, pages 1–18. Springer.
Chen, J.-M., Yu, S.-I., Ou-Yang, Y., Wang, P.-H., Lin, C.-
H., Huang, P.-Y., Yang, B.-Y., and Laih, C.-S. (2008).
Improved factoring of rsa modulus. In Proceedings
of the 25th Workshop on Combinatorial Mathematics
and Computation Theory. Citeseer.
Coppersmith, D. (1994). Solving homogeneous linear
equations over gf(2) via block wiedemann algorithm.
Mathematics of Computation, 62(205):333–350.
Cowie, J., Dodson, B., Elkenbracht-Huizing, R., Lenstra,
A., Montgomery, P., and Zayer, J. (1996). A world
wide number field sieve factoring record: On to 512
bits. In International Conference on the Theory and
Application of Cryptology and Information Security,
pages 382–394. Springer.
Dumas, J.-G. and Villard, G. (2002). Computing the rank
of large sparse matrices over finite fields. In Computer
Algebra in Scientific Computing (CASC) 2002, pages
47–62.
Kaltofen, E. (1995). Analysis of coppersmith’s block
wiedemann algorithm for the parallel solution of
sparse linear systems. Mathematics of Computation,
64(210):777–806.
Kaltofen, E. and Lobo, A. (1999). Distributed matrix-
free solution of large sparse linear systems over finite
fields. Algorithmica, 24(3):331–348.
Kaltofen, E. and Saunders, B. D. (1991). On wiedemann’s
method of solving sparse linear systems. In Interna-
tional Symposium on Applied Algebra, Algebraic Al-
gorithms, and Error-Correcting Codes, pages 29–38.
Springer.
Kaltofen, E. and Yuhasz, G. (2013). On the matrix
berlekamp-massey algorithm. ACM Transactions on
Algorithms (TALG), 9(4):1–24.
Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thom
´
e,
E., Bos, J. W., Gaudry, P., Kruppa, A., Montgomery,
P. L., Osvik, D. A., et al. (2010). Factorization of a
768-bit rsa modulus. In Annual Cryptology Confer-
ence, pages 333–350. Springer.
Krylov, A. N. (1931). On the numerical solution of the
equation by which the frequency of small oscillations
is determined in technical problems. Izv. Akad. Nauk
SSSR Ser. Fiz.-Mat, 4:491–539.
Lanczos, C. (1952). Solution of systems of linear equations
by minimized iterations. J. Res. Nat. Bur. Standards,
49(1):33–53.
Lee, S. and Eigenmann, R. (2008). Adaptive runtime tuning
of parallel sparse matrix-vector multiplication on dis-
tributed memory systems. In Proceedings of the 22nd
annual international conference on Supercomputing,
pages 195–204.
Lenstra, A. K., Lenstra, H. W., Manasse, M. S., and Pol-
lard, J. M. (1993). The number field sieve. In The
development of the number field sieve, pages 11–42.
Springer.
Lin, C.-Y., Chung, Y.-C., and Liu, J.-S. (2003). Effi-
cient data compression methods for multidimensional
sparse array operations based on the ekmr scheme.
IEEE Transactions on Computers, 52(12):1640–1646.
Massey, J. (1969). Shift-register synthesis and bch de-
coding. IEEE transactions on Information Theory,
15(1):122–127.
Montgomery, P., Cavallar, S., and Te Riele, H. (1997). A
new world record for the special number field sieve
factoring method. CWI Quaterly, 10(2):105–107.
Montgomery, P. L. (1995). A block lanczos algorithm for
finding dependencies over gf (2). In International
Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 106–120. Springer.
OpenMP, A. (2016). The openmp api specification for par-
allel programming, openmp arb.
Penninga, O. (1998). Finding column depedencies in sparse
matrices over f
2 by block wiedemann. Modelling,
Analysis and Simulation [MAS].
Pomerance, C. and Smith, J. W. (1992). Reduction of huge,
sparse matrices over finite fields via created catastro-
phes. Experimental Mathematics, 1(2):89–94.
Rivest, R. L., Shamir, A., and Adleman, L. (1978). A
method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM,
21(2):120–126.
Thom
´
e, E. (2002). Subquadratic computation of vector
generating polynomials and improvement of the block
wiedemann algorithm. Journal of symbolic computa-
tion, 33(5):757–775.
Villard, G. (1997). Further analysis of coppersmith’s block
wiedemann algorithm for the solution of sparse lin-
ear systems. In Proceedings of the 1997 international
symposium on Symbolic and algebraic computation,
pages 32–39.
Wiedemann, D. (1986). Solving sparse linear equations
over finite fields. IEEE transactions on information
theory, 32(1):54–62.
Yang, L. T., Huang, G., Feng, J., and Xu, L. (2017). Parallel
gnfs algorithm integrated with parallel block wiede-
mann algorithm for rsa security in cloud computing.
Information Sciences, 387:254–265.
Parallel and Distributed Implementations of the Wiedemann and the Block-Wiedemann Methods over GF(2)
547