5.2235 1.1219 0.0242
6 CONCLUSIONS
In this paper, a novel neuro-dynamic control
approach for above-knee prosthetic system was
developed to reduce gait asymmetry and achieve near
natural gait. Using a filtered tracking error system and
an actor-critic network, the controller was shown to
be able to track synthesised displacement profiles for
the knee and ankle joints while reducing the long-
term cost. As a result, the performance of the
controller improves after each step, i.e., after each
stance phase of the gait. Data collected in the lab
indicates that the synthesised gait profiles are close to
the knee and ankle displacements in an intact
individual while walking at self-selected pace.
Simulation results demonstrate that the knee and
ankle joints as well as the angle the foot makes with
the ground track the corresponding profiles on the
intact side, thereby improving stance and reducing
assymetry. In the future, the performance of the
controller will be verified on a prosthetic device
mounted on a gait simulator.
REFERENCES
Bertsekas, D. P. a. T. J. N. (1995). Neuro-dynamic
programming : an overview Proceedings of 1995 34th
IEEE Conference on Decision and Control, New
Orleans, LA, USA.
Bhat, S. G., Redkar, S., & Sugar, T. G. (2018).
Development of a Passive Prosthetic Ankle With Slope
Adapting Capabilities. ASME 2018 International
Mechanical Engineering Congress and Exposition,
Bugeja, M. K. a. F. S. G. (2008). Neuro-adaptive
dynamic control for mobile robots: Experimental
validation 2008 3rd International Symposium on
Communications, Control and Signal Processing, Saint
Julian's, Malta.
Carney, M. E. a. H. H. (2020). Electric-Energetic
Consequences of Springs in Lower-Extremity Powered
Prostheses on Varied Terrain 2020 8th IEEE
RAS/EMBS International Conference for Biomedical
Robotics and Biomechatronics (BioRob), New York,
NY, USA. 10.1109/BioRob49111.2020.9224458
Carney, M. E. a. S. T. a. S. R. a. D. J.-F. a. H. H. M. (2021).
Design and Preliminary Results of a Reaction Force
Series Elastic Actuator for Bionic Knee and Ankle
Prostheses. IEEE Transactions on Medical Robotics
and Bionics, 3(3), 542-553. https://doi.org/10.1109/
TMRB.2021.3098921
Chen, T., Babanin, A., Muhammad, A., Chapron, B., &
Chen, C. (2020). Modified Evolved Bat Algorithm of
Fuzzy Optimal Control for Complex Nonlinear
Systems. Romanian Journal Of Information Science
And Technology, 23, 28-40.
Fleming, A. a. H. S. a. B. E. a. H. F. a. H. H. H. (2021).
Direct continuous electromyographic control of a
powered prosthetic ankle for improved postural control
after guided physical training: A case study. Wearable
Technologies, 2, e3. https://doi.org/10.1017/wtc.2021.2
Lu, C., Si, J., & Xie, X. (2008). Direct heuristic dynamic
programming for damping oscillations in a large power
system. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 38(4 ,), 1008--1013.
https://doi.org/10.1109/TSMCB.2008.923157
Mahmud, S. M. N., Nivison, S. A., Bell, Z. I., &
Kamalapurkar, R. (2021). Safe Model-Based
Reinforcement Learning for Systems With Parametric
Uncertainties [Original Research]. Frontiers in
Robotics and AI, 8.
https://doi.org/10.3389/frobt.2021.733104
Mai, A., & Commuri, S. (2016). Intelligent control of a
prosthetic ankle joint using gait recognition. Control
Engineering Practice, 49, 1-13. https://doi.org/10.10
16/j.conengprac.2016.01.004
Mai, A. a. C. S. (2013). Intelligent Control of a Prosthetic
Ankle Joint International Conference on Informatics in
Control, Automation and Robotics, https://www.
scitepress.org/Papers/2013/44856/pdf/index.html
Mai, A. a. C. S. a. D. C. P. a. D. J. a. E. W. J. J. a. R. J. L.
(2012). Effect of Prosthetic Foot on Residuum-Socket
Interface Pressure and Gait Characteristics in an
Otherwise Healthy Man With Transtibial
Osteomyoplastic Amputation. JPO: Journal of
Prosthetics and Orthotics, 24(4).
Mielke, M. M., Roberts, R. O., Savica, R., Cha, R.,
Drubach, D. I., Christianson, T., Petersen, R. C. (2012).
Assessing the Temporal Relationship Between
Cognition and Gait: Slow Gait Predicts Cognitive
Decline in the Mayo Clinic Study of Aging. The
Journals of Gerontology: Series A, 68(8), 929-937.
https://doi.org/10.1093/gerona/gls256
Millard, M. a. M. J. a. K. E. (2008). Multi-Step Forward
Dynamic Gait Simulation (Vol. 12).
https://doi.org/10.1007/978-1-4020-8829-2_2
Myers, M., & Chauvin, B. (2021). Above the Knee
Amputations. In. Florida: StatPearls Publishing.
P. (1996). Adjustments to Zatsiorsky-Seluyanov's segment
inertia parameters. Journal of Biomechanics, 29(9),
1223-1230. https://doi.org/https://doi.org/10.1016/00
21-9290(95)00178-6
Pagel, A. a. R. R. a. R. R. a. V. H. (2017). Bio-Inspired
Adaptive Control for Active Knee Exoprosthetics.
IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 25(12), 2355-2364.
https://doi.org/10.1109/TNSRE.2017.2744987