Belay, B., Habtegebrial, T., Liwicki, M., Belay, G., and
Stricker, D. (2019a). Factored convolutional neural
network for amharic character image recognition. In
2019 IEEE International Conference on Image Pro-
cessing (ICIP), pages 2906–2910. IEEE.
Belay, B., Habtegebrial, T., and Stricker, D. (2018).
Amharic character image recognition. In 2018 IEEE
18th International Conference on Communication
Technology (ICCT), pages 1179–1182. IEEE.
Belay, B. H., Habtegebirial, T., Liwicki, M., Belay, G., and
Stricker, D. (2019b). Amharic text image recognition:
Database, algorithm, and analysis. In 2019 Interna-
tional Conference on Document Analysis and Recog-
nition (ICDAR), pages 1268–1273. IEEE.
Birhanu, A. T. (2008). Amharic Character Recognition Sys-
tem for Printed Real-Life Documents. PhD thesis, Ad-
dis Ababa University.
Bora, M. B., Daimary, D., Amitab, K., and Kandar, D.
(2020). Handwritten character recognition from im-
ages using cnn-ecoc. Procedia Computer Science,
167:2403–2409.
Chaudhuri, A. and Ghosh, S. K. (2017). Optical charac-
ter recognition system for czech language using hier-
archical deep learning networks. In Proceedings of
the Computational Methods in Systems and Software,
pages 114–125. Springer.
Cowell, J. and Hussain, F. (2003). Amharic character recog-
nition using a fast signature based algorithm. In Pro-
ceedings on Seventh International Conference on In-
formation Visualization, 2003. IV 2003., pages 384–
389. IEEE.
Dai, Z. and Heckel, R. (2019). Channel normalization in
convolutional neural network avoids vanishing gradi-
ents. arXiv preprint arXiv:1907.09539.
Eigen, D., Rolfe, J., Fergus, R., and LeCun, Y. (2013). Un-
derstanding deep architectures using a recursive con-
volutional network. arXiv preprint arXiv:1312.1847.
Elleuch, M., Tagougui, N., and Kherallah, M. (2016). A
novel architecture of cnn based on svm classifier for
recognising arabic handwritten script. International
Journal of Intelligent Systems Technologies and Ap-
plications, 15(4):323–340.
Gondere, M. S., Schmidt-Thieme, L., Boltena, A. S., and
Jomaa, H. S. (2019). Handwritten amharic charac-
ter recognition using a convolutional neural network.
arXiv preprint arXiv:1909.12943.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.
org.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.
Kim, J., Lee, J. K., and Lee, K. M. (2016). Deeply-recursive
convolutional network for image super-resolution. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1637–1645.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Mars, A. and Antoniadis, G. (2016). Arabic online hand-
writing recognition using neural network. Interna-
tional Journal of Artificial Intelligence and Applica-
tions (IJAIA), 7(5).
Meshesha, M. and Jawahar, C. (2007). Optical character
recognition of amharic documents. African Journal of
Information & Communication Technology, 3(2).
Mulugeta, W. (2004). Ocr for special type of handwritten
amharic text. Yekum Tsifet”), Neural Network Ap-
proach.
Rahman, M. M., Akhand, M., Islam, S., Shill, P. C., and
Rahman, M. H. (2015). Bangla handwritten character
recognition using convolutional neural network. Inter-
national Journal of Image, Graphics and Signal Pro-
cessing, 7(8):42.
Tan, H. H. and Lim, K. H. (2019). Vanishing gradient mit-
igation with deep learning neural network optimiza-
tion. In 2019 7th international conference on smart
computing & communications (ICSCC), pages 1–4.
IEEE.
Yaregal, A. (2002). Optical character recognition of
amharic text: an integrated approach. School of In-
formation Studies for Africal. Addis Ababa University.
Addis Ababa.
Younas, J., Afzal, M. Z., Malik, M. I., Shafait, F., Lukowicz,
P., and Ahmed, S. (2017). D-star: A generic method
for stamp segmentation from document images. In
2017 14th IAPR International Conference on Docu-
ment Analysis and Recognition (ICDAR), volume 1,
pages 248–253. IEEE.
DeLTA 2022 - 3rd International Conference on Deep Learning Theory and Applications
116