netics, Part C (Applications and Reviews), 31(2):216–
233.
Ayed, S., Arzoky, M., Swift, S., Counsell, S., and Tucker, A.
(2018). An exploratory study of the inputs for ensem-
ble clustering technique as a subset selection problem.
In Proceedings of SAI Intelligent Systems Conference,
pages 1041–1055. Springer.
Ball, G. H. and Hall, D. J. (1965). Isodata, a novel method
of data analysis and pattern classification. Technical
report, Stanford research inst Menlo Park CA.
Calinski, R. and Harabasz, G. (1974). A dendrite method
for cluster analysis. Communications in Statistics,
pages 1–27.
Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A.
(2014). Determining the number of clusters using
nbclust package. MSDM, 2014:1.
Doran, R. W. (2007). The gray code. J. Univers. Comput.
Sci., 13(11):1573–1597.
Dua, D. and Graff, C. (2017). Uci machine learning reposi-
tory.
Fern, X. Z. and Brodley, C. E. (2004). Solving cluster en-
semble problems by bipartite graph partitioning. In
Proceedings of the twenty-first international confer-
ence on Machine learning, page 36. ACM.
Fr
¨
anti, P. and Sieranoja, S. (2018). K-means properties on
six clustering benchmark datasets.
Giacinto, G. and Roli, F. (2001). Design of effective neural
network ensembles for image classification purposes.
Image and Vision Computing, 19(9-10):699–707.
Hamerly, G. and Elkan, C. (2003). Learning the k in k-
means. Advances in neural information processing
systems, 16.
Higham, D. J., Kalna, G., and Kibble, M. (2007). Spectral
clustering and its use in bioinformatics. Journal of
computational and applied mathematics, 204(1):25–
37.
Hubert, L. and Arabie, P. (1985). Comparing partitions.
Journal of classification, 2(1):193–218.
Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data
clustering: a review. ACM computing surveys (CSUR),
31(3):264–323.
Kass, R. E. and Wasserman, L. (1995). A reference
bayesian test for nested hypotheses and its relation-
ship to the schwarz criterion. Journal of the american
statistical association, 90(431):928–934.
Kent, J., Bibby, J., and Mardia, K. (2006). Multivariate
analysis (probability and mathematical statistics).
Krzanowski, W. J. and Lai, Y. (1988). A criterion for deter-
mining the number of groups in a data set using sum-
of-squares clustering. Biometrics, pages 23–34.
Li, T., Ding, C., and Jordan, M. I. (2007). Solving con-
sensus and semi-supervised clustering problems using
nonnegative matrix factorization. In Seventh IEEE
International Conference on Data Mining (ICDM
2007), pages 577–582. IEEE.
Milligan, G. W. (1981). A monte carlo study of thirty inter-
nal criterion measures for cluster analysis. Psychome-
trika, 46(2):187–199.
Pelleg, D., Moore, A. W., et al. (2000). X-means: Extend-
ing k-means with efficient estimation of the number of
clusters. In Icml, volume 1, pages 727–734.
Ratkowsky, D. and Lance, G. (1978). Criterion for deter-
mining the number of groups in a classification. Aus-
tralian Computer Journal.
Rayana, S. (2016). ODDS library.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.
Strehl, A. and Ghosh, J. (2002). Cluster ensembles—
a knowledge reuse framework for combining multi-
ple partitions. Journal of machine learning research,
3(Dec):583–617.
Sugar, C. A. and James, G. M. (2003). Finding the num-
ber of clusters in a dataset: An information-theoretic
approach. Journal of the American Statistical Associ-
ation, 98(463):750–763.
Swift, S., Tucker, A., Crampton, J., and Garway-Heath, D.
(2007). An improved restricted growth function ge-
netic algorithm for the consensus clustering of reti-
nal nerve fibre data. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation,
pages 2174–2181. ACM.
Swift, S., Tucker, A., Vinciotti, V., Martin, N., Orengo, C.,
Liu, X., and Kellam, P. (2004). Consensus clustering
and functional interpretation of gene-expression data.
Genome biology, 5(11):1–16.
Thrun, M. C. and Ultsch, A. (2021). Swarm intelligence
for self-organized clustering. Artificial Intelligence,
290:103237.
Ultsch, A. (2004). Strategies for an artificial life system to
cluster high dimensional data. Abstracting and Syn-
thesizing the Principles of Living Systems, GWAL-6,
pages 128–137.
Vishnuvarthanan, G., Rajasekaran, M. P., Subbaraj, P., and
Vishnuvarthanan, A. (2016). An unsupervised learn-
ing method with a clustering approach for tumor iden-
tification and tissue segmentation in magnetic reso-
nance brain images. Applied Soft Computing, 38:190–
212.
West, D., Dellana, S., and Qian, J. (2005). Neu-
ral network ensemble strategies for financial deci-
sion applications. Computers & operations research,
32(10):2543–2559.
Zhang, Y. and Zhao, Y. (2004). Automated clustering algo-
rithms for classification of astronomical objects. As-
tronomy & Astrophysics, 422(3):1113–1121.
Estimating the Optimal Number of Clusters from Subsets of Ensembles
391