funded by Generalitat Valenciana and Fondo Social
Europeo (FSE).
REFERENCES
Cabrera, J., Cebollada, S., Pay
´
a, L., Flores, M., and
Reinoso, O. (2021). A Robust CNN Training Ap-
proach to Address Hierarchical Localization with Om-
nidirectional Images:. In Proceedings of the 18th
International Conference on Informatics in Control,
Automation and Robotics, pages 301–310, Online
Streaming. SCITEPRESS.
Cebollada, S., Pay
´
a, L., Jiang, X., and Reinoso, O. (2021).
Development and use of a convolutional neural net-
work for hierarchical appearance-based localization.
Artificial Intelligence Review.
Cebollada, S., Pay
´
a, L., Mayol, W., and Reinoso, O. (2019).
Evaluation of Clustering Methods in Compression of
Topological Models and Visual Place Recognition Us-
ing Global Appearance Descriptors. Applied Sciences,
9(3):377.
Courbon, J., Mezouar, Y., and Martinet, P. (2012). Evalu-
ation of the Unified Model of the Sphere for Fisheye
Cameras in Robotic Applications. Advanced Robotics,
26(8-9):947–967.
Dehghan Tezerjani, A., Mehrandezh, M., and Paranjape,
R. (2015). Optimal Spatial Resolution of Omnidi-
rectional Imaging Systems for Pipe Inspection Appli-
cations. International Journal of Optomechatronics,
9(4):261–294.
Flores, M., Valiente, D., Gil, A., Reinoso, O., and Pay
´
a, L.
(2022). Efficient probability-oriented feature match-
ing using wide field-of-view imaging. Engineering
Applications of Artificial Intelligence, 107:104539.
Ho, T. and Budagavi, M. (2017). Dual-fisheye lens stitching
for 360-degree imaging. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 2172–2176, New Orleans, LA.
IEEE.
Ho, T., Schizas, I. D., Rao, K. R., and Budagavi, M. (2017).
360-degree video stitching for dual-fisheye lens cam-
eras based on rigid moving least squares. In 2017
IEEE International Conference on Image Processing
(ICIP), pages 51–55, Beijing. IEEE.
Ishikawa, R., Oishi, T., and Ikeuchi, K. (2018). LiDAR
and Camera Calibration Using Motions Estimated by
Sensor Fusion Odometry. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 7342–7349. ISSN: 2153-0866.
Ji, S., Qin, Z., Shan, J., and Lu, M. (2020). Panoramic
SLAM from a multiple fisheye camera rig. IS-
PRS Journal of Photogrammetry and Remote Sensing,
159:169–183.
Lo, I.-C., Shih, K.-T., and Chen, H. H. (2018). Image Stitch-
ing for Dual Fisheye Cameras. In 2018 25th IEEE In-
ternational Conference on Image Processing (ICIP),
pages 3164–3168, Athens. IEEE.
Mehta, J. D. and Bhirud, S. G. (2011). Image stitching tech-
niques. In Pise, S. J., editor, Thinkquest˜2010, pages
74–80. Springer India, New Delhi.
Ni, G., Chen, X., Zhu, Y., and He, L. (2017). Dual-fisheye
lens stitching and error correction. In 2017 10th In-
ternational Congress on Image and Signal Process-
ing, BioMedical Engineering and Informatics (CISP-
BMEI), pages 1–6, Shanghai. IEEE.
Qu, Z., Lin, S.-P., Ju, F.-R., and Liu, L. (2015). The
Improved Algorithm of Fast Panorama Stitching for
Image Sequence and Reducing the Distortion Errors.
Mathematical Problems in Engineering, 2015:1–12.
Rom
´
an, V., Pay
´
a, L., Cebollada, S., Peidr
´
o, A., and
Reinoso, O. (2022). Evaluating the Robustness of
New Holistic Description Methods in Position Esti-
mation of Mobile Robots. In Gusikhin, O., Madani,
K., and Zaytoon, J., editors, Informatics in Control,
Automation and Robotics, volume 793, pages 207–
225. Springer International Publishing, Cham.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). ORB: An efficient alternative to SIFT or
SURF. In 2011 International Conference on Com-
puter Vision, pages 2564–2571. ISSN: 2380-7504.
Scaramuzza, D. (2014). Omnidirectional Camera. In
Ikeuchi, K., editor, Computer Vision, pages 552–560.
Springer US, Boston, MA.
Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006). A
Toolbox for Easily Calibrating Omnidirectional Cam-
eras. In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5695–5701.
ISSN: 2153-0866.
Shouzhang, X. and Fengwen, W. (2011). Generation of
Panoramic View from 360 Degree Fisheye Images
Based on Angular Fisheye Projection. In 2011 10th
International Symposium on Distributed Computing
and Applications to Business, Engineering and Sci-
ence, pages 187–191.
Simonyan, K. and Zisserman, A. (2015). Very Deep Con-
volutional Networks for Large-Scale Image Recogni-
tion. arXiv:1409.1556 [cs]. arXiv: 1409.1556.
Souza, T., Roberto, R., Silva do Monte Lima, J. P., Te-
ichrieb, V., Quintino, J. P., da Silva, F. Q., Santos,
A. L., and Pinho, H. (2018). 360 Stitching from Dual-
Fisheye Cameras Based on Feature Cluster Match-
ing. In 2018 31st SIBGRAPI Conference on Graph-
ics, Patterns and Images (SIBGRAPI), pages 313–320,
Parana. IEEE.
ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics
442