Opportunities for Data Sharing in IoT. Electronics, 9,
2083.
de Mast, J., & Lokkerbol, J. (2012). An analysis of the Six
Sigma DMAIC method from the perspective of
problem solving. International Journal of Production
Economics, 139, 604–614.
Eisenhardt, K. (1989). Building Theories from Case Study
Research. The Academy of Management Review, 14,
532–550.
English, L. P. (1999). Improving data warehouse and
business information quality: Methods for reducing
costs and increasing profits. New York: Wiley.
Eppler, M. J., & Muenzenmayer, P. (2002). Measuring
Information Quality In The Web Context: A Survey Of
State-Of-The-Art Instruments And An Application
Methodology. Proceedings of the Seventh International
Conference on Information Quality (ICIQ-02).
Glowalla, P., & Sunyaev, A. (2014). ERP system fit – an
explorative task and data quality perspective. Journal
of Enterprise Information Management, 27, 668–686.
Haug, A., & Arlbjørn, J. S. (2011). Barriers to master data
quality. Journal of Enterprise Information
Management, 288–303.
Hikmawati, S., Santosa, P. I., & Hidayah, I. (2021).
Improving Data Quality and Data Governance Using
Master Data Management: A Review. IJITEE
(International Journal of Information Technology and
Electrical Engineering), 5, 90.
Jones-Farmer, L. A., Ezell, J. D., & Hazen, B. T. (2014).
Applying Control Chart Methods to Enhance Data
Quality. Technometrics, 56, 29–41.
Klein, A., & Lehner, W. (2009). Representing Data Quality
in Sensor Data Streaming Environments. Journal of
Data and Information Quality, 1, 1–28.
Kleindienst, D. (2017). The data quality improvement plan:
Deciding on choice and sequence of data quality
improvements. Electronic Markets, 27, 387–398.
Krishnan, S., Haas, D., Franklin, M. J., & Wu, E. (2016).
Towards reliable interactive data cleaning: A user
survey and recommendations. Proceedings of the
Workshop on Human-In-the-Loop Data Analytics -
HILDA ’16, 1–5. San Francisco, California: ACM
Press.
Loshin, D. (2010). Master Data Management. Morgan
Kaufmann.
Machado, I., Costa, C., & Santos, M. Y. (2021). Data-
Driven Information Systems: The Data Mesh Paradigm
Shift. 6. Valencia Spain: AIS.
McGilvray, D. (2021). Executing Data Quality Projects:
Ten Steps to Quality Data and Trusted Information
(2nd edition). Waltham: Academic Press.
Metzger, A., Chi, C., Engel, Y., & Marconi, A. (2012).
Research Challenges on Online Service Quality
Prediction for Proactive Adaptation.
Miles, M. B., & Huberman, A. M. (1994). Qualitative Data
Analysis: An Expanded Sourcebook. SAGE.
Montgomery, D. C., & Woodall, W. H. (2008). An
Overview of Six Sigma. International Statistical
Review / Revue Internationale de Statistique, 76, 329–
346.
Ofner, M., Otto, B., Oesterle, H., & Straub, K. (2013).
Management of the master data lifecycle: A framework
for analysis. Journal of Enterprise Information
Management, 26, 472–491.
Otto, B., Ebner, V., & Hüner, Kai. M. (2010). Measuring
Master Data Quality: Findings from a Case Study.
Retrieved from https://core.ac.uk/reader/301348620
Otto, B., & Österle, H. (2015). Corporate Data Quality
Prerequisite for Successful Business Models. Retrieved
from http://nbn-resolving.de/urn:nbn:de:101:1-
2015112720186
Paré, G. (2004). Investigating Information Systems with
Positivist Case Research. Communications of the
Association for Information Systems, 13.
https://doi.org/10.17705/1CAIS.01318
Parssian, A., Sarkar, S., & Jacob, V. S. (2004). Assessing
Data Quality for Information Products: Impact of
Selection, Projection, and Cartesian Product.
Management Science, 50, 967–982.
Röthlin, M. (2010). Management of Data Quality in
Enterprise Resource Planning Systems. BoD – Books
on Demand.
Si, Y., Xiao, Q., Su, J., Zeng, S., & Hong, X. (2020).
Research on Data Product Quality Evaluation Model
Based on AHP and TOPSIS. Proceedings of the 4th
International Conference on Computer Science and
Application Engineering, 1–5. Sanya China: ACM.
Singh, R., & Singh, D. K. (2010). A Descriptive
Classification of Causes of Data Quality Problems in
Data Warehousing. International Journal of Computer
Science Issues, 7, 10.
Smętkowska, M., & Mrugalska, B. (2018). Using Six
Sigma DMAIC to Improve the Quality of the
Production Process: A Case Study. Procedia - Social
and Behavioral Sciences, 238, 590–596.
Su, Z., & Jin, Z. (2007). A Methodology for Information
Quality Assessment in the Designing and
Manufacturing Processes of Mechanical Products
[Chapter].
Taleb, I., Serhani, M. A., & Dssouli, R. (2018). Big Data
Quality: A Survey. 2018 IEEE International Congress
on Big Data (BigData Congress), 166–173. San
Francisco, CA, USA: IEEE.
Tayi, G. K., & Ballou, D. P. (1998). Examining data quality.
Communications of the ACM, 41, 54–57.
Wang, R. Y. (1998). A product perspective of TDQM. 41.
Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy:
What Data Quality Means to Data Consumers. Journal
of Management Information Systems, 12, 5–33.
Yin, R. K. (2003). Case Study Research—Design and
Methods (3rd ed.). Sage Publications.
Zhang, R., Indulska, M., & Sadiq, S. (2019). Discovering
Data Quality Problems: The Case of Repurposed Data.
Business & Information Systems Engineering, 61, 575–
593.
Zhu, H., Madnick, S., Lee, Y., & Wang, R. (2014). Data
and Information Quality Research: Its Evolution and
Future. In H. Topi & A. Tucker (Eds.), Computing
Handbook, Third Edition (pp. 16-1-16–20). Chapman
and Hall/CRC.