Blloshmi, R., Bevilacqua, M., Fabiano, E., Caruso, V., and
Navigli, R. (2021). SPRING Goes Online: End-to-
End AMR Parsing and Generation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages
134–142, Online and Punta Cana, Dominican Repub-
lic. Association for Computational Linguistics.
Blloshmi, R., Tripodi, R., and Navigli, R. (2020). Xl-
amr: Enabling cross-lingual amr parsing with transfer
learning techniques. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2487–2500.
Cai, D., Li, X., Ho, J. C.-S., Bing, L., and Lam, W. (2021).
Multilingual amr parsing with noisy knowledge distil-
lation. arXiv preprint arXiv:2109.15196.
Cai, S. and Knight, K. (2013). Smatch: an evaluation metric
for semantic feature structures. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
748–752.
Cettolo, M., Girardi, C., and Federico, M. (2012). Wit3:
Web inventory of transcribed and translated talks. In
EAMT.
Chaudhary, V., Tang, Y., Guzm
´
an, F., Schwenk, H., and
Koehn, P. (2019). Low-resource corpus filtering us-
ing multilingual sentence embeddings. arXiv preprint
arXiv:1906.08885.
Damonte, M. and Cohen, S. B. (2017). Cross-lingual ab-
stract meaning representation parsing. arXiv preprint
arXiv:1704.04539.
Damonte, M. and Cohen, S. B. (2019). Structural neural
encoders for amr-to-text generation. arXiv preprint
arXiv:1903.11410.
Fan, A. and Gardent, C. (2020). Multilingual amr-to-text
generation. arXiv preprint arXiv:2011.05443.
Feng, F., Yang, Y., Cer, D., Arivazhagan, N., and Wang, W.
(2020). Language-agnostic bert sentence embedding.
arXiv preprint arXiv:2007.01852.
Koehn, P. (2005). Europarl: A parallel corpus for statisti-
cal machine translation. In Proceedings of Machine
Translation Summit X: Papers, pages 79–86, Phuket,
Thailand.
Konstas, I., Iyer, S., Yatskar, M., Choi, Y., and Zettle-
moyer, L. (2017). Neural amr: Sequence-to-sequence
models for parsing and generation. arXiv preprint
arXiv:1704.08381.
Lin, C.-Y. (2004). Rouge: A package for automatic evalu-
ation of summaries. In Text summarization branches
out, pages 74–81.
Lyu, C. and Titov, I. (2018). Amr parsing as graph
prediction with latent alignment. arXiv preprint
arXiv:1805.05286.
Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meet-
ing of the Association for Computational Linguistics,
pages 311–318.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.
Reimers, N. and Gurevych, I. (2020). Making monolin-
gual sentence embeddings multilingual using knowl-
edge distillation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics.
Roberts, A., Raffel, C., and Shazeer, N. (2020). How much
knowledge can you pack into the parameters of a lan-
guage model? In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5418–5426, Online. Association
for Computational Linguistics.
Singhal, A. et al. (2001). Modern information retrieval: A
brief overview. IEEE Data Eng. Bull., 24(4):35–43.
Song, L., Zhang, Y., Wang, Z., and Gildea, D. (2018). A
graph-to-sequence model for amr-to-text generation.
arXiv preprint arXiv:1805.02473.
Tiedemann, J., Thottingal, S., et al. (2020). Opus-mt–
building open translation services for the world. In
Proceedings of the 22nd Annual Conference of the
European Association for Machine Translation. Euro-
pean Association for Machine Translation.
Wang, C. and Xue, N. (2017). Getting the most out of
AMR parsing. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1257–1268, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.
Wang, C., Xue, N., and Pradhan, S. (2015). A transition-
based algorithm for AMR parsing. In Proceedings of
the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 366–375, Denver,
Colorado. Association for Computational Linguistics.
Wang, T., Wan, X., and Jin, H. (2020). Amr-to-text gen-
eration with graph transformer. Transactions of the
Association for Computational Linguistics, 8:19–33.
Xu, D., Li, J., Zhu, M., Zhang, M., and Zhou, G. (2021).
XLPT-AMR: Cross-lingual pre-training via multi-
task learning for zero-shot AMR parsing and text gen-
eration. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
896–907, Online. Association for Computational Lin-
guistics.
Zhang, S., Ma, X., Duh, K., and Van Durme, B. (2019).
Amr parsing as sequence-to-graph transduction. arXiv
preprint arXiv:1905.08704.
Zhu, J., Li, J., Zhu, M., Qian, L., Zhang, M., and Zhou,
G. (2019). Modeling graph structure in transformer
for better amr-to-text generation. arXiv preprint
arXiv:1909.00136.
xAMR: Cross-lingual AMR End-to-End Pipeline
139