Ducic, N.; Jovicic, A.; Manasijevic, S.; Radisa, R.;
Cojbasic, Z.; Savković, B. Application of Machine
Learning in the Control of Metal Melting Production
Process. Applied Sciences, v.10, n.17, pp. 6048-6063,
2020.
Fontes, D. O. L.; Vasconcelos, L. G.; Brito, R. P. Blast
furnace hot metal temperature and silicon content
prediction using soft sensor based on fuzzy C-means
and exogenous nonlinear autoregressive models.
Computers & Chemical Engineering, 141, 107028,
2020.
He, F.; Zhang, L. Prediction model of end-point phosphorus
content in BOF steelmaking process based on PCA and
BP neural network. Journal of Process Control, v.66,
pp. 51-58, 2018.
Hou, Y.; Wu, Y.; Liu, Z.; Han, H.; Wang, P. Dynamic
multi-objective differential evolution algorithm based
on the information of evolution progress. Science China
Technological Sciences, v.64, n.08, pp. 1676–1689,
2021.
Ibragimov, A. F.; Iskhakov, I. I.; Skopov, G. B.;
Kirichenko, A. N. Using Oxygen-Enriched Blast
During the Operation of Shaft Furnaces of the
Mednogorsk Copper–Sulfur Combine LLC.
Metallurgist, v.63, pp. 62-69, 2019.
Jantre, S. R.; Bhattacharya, S.; Maiti, T. Quantile
Regression Neural Networks: A Bayesian Approach.
Journal of Statistical Theory and Practice, v.15, n.03,
pp. 01-31, 2021.
Jiang, Y.; Zhou, P.; Yu, G. Multivariate molten iron quality
based on improved incremental Randon vector
functional-link networks. IFAC PapersOnLine, pp.
290-294, 2018.
Kang, Y. B. Progress of Thermodynamic Modeling for
Sulfide Dissolution in Molten Oxide Slags: Sulfide
Capacity and Phase Diagram. Metallurgical and
Materials Transactions B, v.52, n.05, pp. 2859-2882,
2021.
Kina, C.; Turk, K.; Atalay, E.; Donmez, I.; Tanyildizi, H.
Comparison of extreme learning machine and deep
learning model in the estimation of the fresh properties
of hybrid fiber-reinforced SCC. Neural Computing and
Applications, v.33, n.18, pp. 11641-11659, 2021.
Kong, W.; Liu, J.; Yu, Y.; Hou, X.; He, Z. Effect of
w(MgO)/w(Al
2
O
3
) ratio and basicity on microstructure
and metallurgical properties of blast furnace slag.
Journal of Iron and Steel Research International, v.28,
n.10, pp. 1223-1232, 2021.
Kurunov, I. F. Ways of Improving Blast Furnace Smelting
Efficiency with Injection of Coal-Dust Fuel and Natural
Gas. Metallurgist, v.61, n.09, pp. 736–744, 2018.
Li, J.; Hua, C.; Qian, J.; Guan, X. Low-rank based Multi-
Input Multi-Output Takagi-Sugeno fuzzy modeling for
prediction of molten iron quality in blast furnace. Fuzzy
Sets and Systems, v. 421, pp. 178-192, 2021.
Li, W.; Zhuo, Y.; Bao, J.; Shen, Y. A data-based soft-sensor
approach to estimating raceway depth in ironmaking
blast furnace. Powder Technology, v.390, pp. 529-538,
2021.
Li, Y.; Zhang, J.; Zhang, S.; Xiao, W. Dual ensemble online
modeling for dynamic estimation of hot metal silicon
content in blast furnace system. ISA Transactions,
2022, article in press.
Liang, W.; Wang, G.; Ning, X.; Zhang, J.; Li, Y.; Jiang, C.;
Zhang, N. Application of BP neural network to the
prediction of coal ash melting characteristic
temperature. Fuel, v.260, 116324, 2020.
Liu, Y.; Wang, Y.; Chen, L.; Zhao, J.; Wang, W.; Liu, Q.
Incremental Bayesian broad learning system and its
industrial application. Artificial Intelligence Review,
v.54, n.05, 2021.
Matino, I.; Dettori, S.; Colla, V.; Weber, V.; Salame, S.
Two innovative modelling approaches in order to
forecast consumption of blast furnace gas by hot blast
stoves. Energy Procedia, v.158, pp. 4043-4048, 2019a.
Matino, I; Dettori, S; Colla, V; Weber, V.; Salame, S.
Application of Echo State Neural Networks to forecast
blast furnace gas production: pave the way to off-gas
optimized management, Energy Procedia, v.158, pp.
4037-4042, 2019b.
Matino, I; Dettori, S; Colla, V; Weber, V.; Salame, S.
Forecasting blast furnace gas production and demand
through echo state neural network-based models: Pave
the way to off-gas optimized management, Applied
Energy, v.253, pp. 113578, 2019c.
Mhaya, A. M.; Huseien, G. F.; Faridmehr, I.; Abidin, A. R.;
Alyousef, R.; Ismail, M. Evaluating mechanical
properties and impact resistance of modified concrete
containing ground Blast Furnace slag and discarded
rubber tire crumbs. Construction and Building
Materials, v. 295, pp. 123603, 2021.
Muchnik, D. A.; Trikilo, A. I.; Lyalyuk, V. P.; Kassim, D.
A. Coke Quality and Blast-Furnace Performance. Coke
and Chemistry, v.61, pp. 12-18, 2018.
Muraveva, I. G.; Togobitskaya, D. N.; Ivancha, N. G.;
Bel’kova, A. I.; Nesterov, A. S. Concept Development
of an Expert System for Selecting the Optimal
Composition of a Multicomponent Blast-Furnace
Charge and Functional and Algorithmic Structure. Steel
in Translation, v.51, pp. 33-38, 2021.
North, L.; Blackmore, K.; Nesbitt, K.; Mahoney, M. R.
Methods of coke quality prediction: A review. Fuel,
v.219, pp. 426-445, 2018.
Oliveira, A. G.; Totola, L. B.; Bicalho, K. V.; Hisatugu, W.
H. Prediction of compression index of soft soils from
the Brazilian coast using artificial neural networks and
empirical correlations. Soils and Rocks, v.43, pp. 109-
121, 2020.
Pandey, T. N.; Jagadev, A. K.; Dehuri, S.; Cho, S. B. A
novel committee machine and reviews of neural
network and statistical models for currency exchange
rate prediction: An experimental analysis. Journal of
King Saud University - Computer and Information
Sciences, v.32, n.9, pp. 987-999, 2020.
Pavlov, A. V.; Polinov, A. A.; Spirin, N. A.; Onorin, O. P.;
Lavrov, V. V.; Gurin, I. A. Decision-Making Support
in Blast-Furnace Operation. Steel in Translation, v.49,
n.3, pp. 185-193, 2019.