REFERENCES
Abran, A. and Nguyenkim, H. (1993). Measurement of the
maintenance process from a demand-based perspec-
tive. J. Softw. Maintenance Res. Pract., 5:63–90.
Aggarwal, K., Hindle, A., and Stroulia, E. (2014). Co-
evolution of project documentation and popularity
within github. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR
2014, page 360–363, New York, NY, USA. Associ-
ation for Computing Machinery.
Allamanis, M., Barr, E. T., Bird, C., Devanbu, P., Marron,
M., and Sutton, C. (2018). Mining semantic loop id-
ioms. IEEE Transactions on Software Engineering,
44(7):651–668.
Allamanis, M. and Sutton, C. (2014). Mining idioms from
source code. CoRR, abs/1404.0417.
Augsten, N., B
¨
ohlen, M., and Gamper, J. (2008). The
¡i¿pq¡/i¿-gram distance between ordered labeled trees.
ACM Trans. Database Syst., 35(1).
Augsten, N., B
¨
ohlen, M. H., and Gamper, J. (2005). Ap-
proximate matching of hierarchical data using pq-
grams. In VLDB.
Baltes, S., Dumani, L., Treude, C., and Diehl, S. (2018).
Sotorrent: reconstructing and analyzing the evolution
of stack overflow posts. In Zaidman, A., Kamei, Y.,
and Hill, E., editors, Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,
pages 319–330. ACM.
Borges, H., Hora, A., and Valente, M. T. (2016). Un-
derstanding the factors that impact the popularity of
github repositories. In 2016 IEEE International Con-
ference on Software Maintenance and Evolution (IC-
SME), pages 334–344.
Dimaridou., V., Kyprianidis., A., Papamichail., M., Dia-
mantopoulos., T., and Symeonidis., A. (2017). To-
wards modeling the user-perceived quality of source
code using static analysis metrics. In Proceedings
of the 12th International Conference on Software
Technologies - ICSOFT,, pages 73–84. INSTICC,
SciTePress.
Dimaridou, V., Kyprianidis, A.-C., Papamichail, M., Dia-
mantopoulos, T., and Symeonidis, A. (2018). Assess-
ing the user-perceived quality of source code compo-
nents using static analysis metrics. In Cabello, E.,
Cardoso, J., Maciaszek, L. A., and van Sinderen, M.,
editors, Software Technologies, pages 3–27, Cham.
Springer International Publishing.
Fowkes, J. and Sutton, C. (2016). Parameter-free proba-
bilistic api mining across github. In Proceedings of
the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE
2016, page 254–265, New York, NY, USA. Associa-
tion for Computing Machinery.
Hnatkowska, B. and Jaszczak, A. (2014). Impact of se-
lected java idioms on source code maintainability –
empirical study. In Zamojski, W., Mazurkiewicz, J.,
Sugier, J., Walkowiak, T., and Kacprzyk, J., editors,
Proceedings of the Ninth International Conference
on Dependability and Complex Systems DepCoS-
RELCOMEX. June 30 – July 4, 2014, Brun
´
ow, Poland,
pages 243–254, Cham. Springer International Pub-
lishing.
Ji, X., Liu, L., and Zhu, J. (2021). Code clone detection with
hierarchical attentive graph embedding. International
Journal of Software Engineering and Knowledge En-
gineering, 31(6):837–861. cited By 0.
Klein, P. (1998). Computing the edit-distance between un-
rooted ordered trees. In ESA.
McCabe, T. (1976). A complexity measure. IEEE Transac-
tions on Software Engineering, SE-2:308–320.
Papamichail, M., Diamantopoulos, T., and Symeonidis, A.
(2016a). User-perceived source code quality estima-
tion based on static analysis metrics. pages 100–107.
Papamichail, M., Diamantopoulos, T., and Symeonidis, A.
(2016b). User-perceived source code quality estima-
tion based on static analysis metrics. In 2016 IEEE
International Conference on Software Quality, Relia-
bility and Security (QRS), pages 100–107.
Sivaraman, A., Abreu, R., Scott, A., Akomolede, T., and
Chandra, S. (2021). Mining idioms in the wild. CoRR,
abs/2107.06402.
Tai, K. (1979). The tree-to-tree correction problem. J. ACM,
26:422–433.
Tanaka, H., Matsumoto, S., and Kusumoto, S. (2019). A
study on the current status of functional idioms in
java. IEICE Transactions on Information and Systems,
E102.D:2414–2422.
Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., and
Zhang, D. (2013). Mining succinct and high-coverage
api usage patterns from source code. In 2013 10th
Working Conference on Mining Software Repositories
(MSR), pages 319–328.
Weber, S. and Luo, J. (2014). What makes an open source
code popular on git hub? In 2014 IEEE Interna-
tional Conference on Data Mining Workshop, pages
851–855.
Zhang, K. and Shasha, D. (1989). Simple fast algorithms for
the editing distance between trees and related prob-
lems. SIAM J. Comput., 18:1245–1262.
Zhang, Y. and Wang, T. (2021). Cceyes: An effective tool
for code clone detection on large-scale open source
repositories. pages 61–70. cited By 0.
ICSOFT 2022 - 17th International Conference on Software Technologies
90