Kumar, S., W
¨
ohrle, H., Trampler, M., Simnofske, M., Pe-
ters, H., Mallwitz, M., Kirchner, E. A., and Kirchner,
F. (2019). Modular design and decentralized control
of the RECUPERA exoskeleton for stroke rehabilita-
tion. Applied Sciences (Switzerland), 9(4).
Lessard, S., Pansodtee, P., Robbins, A., Trombadore, J. M.,
Kurniawan, S., and Teodorescu, M. (2018). A Soft
Exosuit for Flexible Upper-Extremity Rehabilitation.
IEEE Transactions on Neural Systems and Rehabili-
tation Engineering, 26(8):1604–1617.
Linda, N., Maia, M., Hennen, L., Wolbring, G., Bratan, T.,
Kukk, P., Cas, J., Capari, L., Krieger-Lamina, J., and
Mordini, E. (2018). Assistive technologies for people
with disabilities - part ii: Current and emerging tech-
nologies.
Liu, K., Xiong, C. H., He, L., Chen, W. B., and Huang, X. L.
(2018). Postural synergy based design of exoskele-
ton robot replicating human arm reaching movements.
Robotics and Autonomous Systems, 99:84–96.
McHugh, G., Swain, I. D., and Jenkinson, D. (2013). Treat-
ment components for upper limb rehabilitation after
stroke: a survey of UK national practice. Disability
and Rehabilitation, 36(11):925–931.
Miao, Q., McDaid, A., Zhang, M., Kebria, P., and Li, H.
(2018). A three-stage trajectory generation method
for robot-assisted bilateral upper limb training with
subject-specific adaptation. Robotics and Autonomous
Systems, 105:38–46.
Miao, Q., Peng, Y., Liu, L., McDaid, A., and Zhang, M.
(2020a). Subject-specific compliance control of an
upper-limb bilateral robotic system. Robotics and Au-
tonomous Systems, 126:103478.
Miao, Q., Zhang, M., McDaid, A., Peng, Y., and Xie,
S. Q. (2020b). A robot-assisted bilateral upper limb
training strategy with subject-specific workspace: A
pilot study. Robotics and Autonomous Systems,
124:103334.
Milicin, C. and S
ˆ
ırbu, E. (2018). A comparative study of re-
habilitation therapy in traumatic upper limb peripheral
nerve injuries. NeuroRehabilitation, 42(1):113–119.
Occhionero, V., Korpinen, L., and Gobba, F. (2014). Upper
limb musculoskeletal disorders in healthcare person-
nel. Ergonomics, 57(8):1166–1191.
Olanrewaju, O. A., Faieza, A. A., and Syakirah, K. (2015).
Application of robotics in medical fields: Rehabili-
tation and surgery. Int. J. Comput. Appl. Technol.,
52(4):251–256.
Palacios, J. R. (2015). Sistema lo-
comotor extremidad superior.
https://www.infermeravirtual.com/esp/actividades de
la vida diaria/ficha/extremidad superior/sistema loc
omotor.
Ritchie, P. (2003). Sports injuries: Mechanisms, prevention,
treatment. second edition. Arthroscopy: The Journal
of Arthroscopic & Related Surgery, 19(4):448.
Romero-Acevedo, M., Guatibonza, A., and Velasco-Vivas,
A. (2018). Modular knee-rehabilitation device: Con-
figuration and workspace of assisted physical therapy
routines. In 2018 IEEE 2nd Colombian Conference
on Robotics and Automation (CCRA). IEEE.
Ruiz, D. M. C. (2011). Epicondilitis lateral: conceptos de
actualidad. revisi
´
on de tema. Revista Med de la Fac-
ultad de Medicina, 19(1):9.
Sanchez, D. M. Epicondylitis, arthroscopic surgery unit.
https://www.ucaorthopedics.com/patologias/codo/epi
condilitis/. [Online; accessed March-2022].
Sheng, B., Xie, S., Tang, L., Deng, C., and Zhang,
Y. (2019). An Industrial Robot-Based Rehabilita-
tion System for Bilateral Exercises. IEEE Access,
7:151282–151294.
SportMe. “las tendinitis del codo. epicondili-
tis y epitrocleitis” medical center sportme.
https://clinicabernaldez.com/tendinitis-del-codo-
dolor-de-codo-epicondilitis-epitrocleitis/. [Online;
accessed March-2020].
Sun, J., Shen, Y., and Rosen, J. (2021). Sensor reduction,
estimation, and control of an upper-limb exoskeleton.
IEEE Robotics and Automation Letters, 6(2):1012–
1019.
Taboadela, C. H. (2007). Goniometria una herramienta para
la evaluacion de las incapacidades. Medicine. ASO-
CIART SA ART, pages 1–130.
Ugurlu, B., Nishimura, M., Hyodo, K., Kawanishi, M., and
Narikiyo, T. (2015). Proof of Concept for Robot-
Aided Upper Limb Rehabilitation Using Disturbance
Observers. IEEE Transactions on Human-Machine
Systems, 45(1):110–118.
Vulliet, P., Chervin, J., Pierrart, J., Bourdillon, E., and
Masmejean, E. (2017). Patolog
´
ıas del codo y reha-
bilitaci
´
on. EMC - Kinesiterapia - Medicina F
´
ısica,
38(2):1 – 18.
Wattchow, K. A., McDonnell, M. N., and Hillier, S. L.
(2018). Rehabilitation interventions for upper limb
function in the first four weeks following stroke: A
systematic review and meta-analysis of the evidence.
Archives of Physical Medicine and Rehabilitation,
99(2):367–382.
WHO (2011). World report on disability. Technical report,
World Health Organization.
Wu, W., Fong, J., Crocher, V., Lee, P. V., Oetomo, D., Tan,
Y., and Ackland, D. C. (2018). Modulation of shoul-
der muscle and joint function using a powered upper-
limb exoskeleton. Journal of Biomechanics, 72:7–16.
Zhang, L., Guo, S., and Sun, Q. (2020). Development and
assist-as-needed control of an end-effector upper limb
rehabilitation robot. Applied Sciences, 10(19):6684.
Zimmermann, Y., Forino, A., Riener, R., and Hutter, M.
(2019). ANYexo: A Versatile and Dynamic Upper-
Limb Rehabilitation Robot. IEEE Robotics and Au-
tomation Letters, 4(4):3649–3656.
Mechanical Design of an Assistive Robotic System for Bilateral Elbow Tendinopathy Rehabilitation
329