10233 of Lecture Notes in Computer Science, pages
293–304.
Ahmed, S. and Mouhoub, M. (2020). Conditional prefer-
ence networks with user’s genuine decisions. Comput.
Intell., 36(3):1414–1442.
Alanazi, E., Mouhoub, M., and Zilles, S. (2019). The com-
plexity of exact learning of acyclic conditional prefer-
ence networks from swap examples. Artificial Intelli-
gence, 278:103182.
Ali, A. M. H. (2019). Summarizing conditional preference
networks.
Alkhiri, H. and Mouhoub, M. (2022). Constrained cp-nets
similarity. In Rocha, A. P., Steels, L., and van den
Herik, H. J., editors, Proceedings of the 14th Inter-
national Conference on Agents and Artificial Intelli-
gence, ICAART 2022, Volume 3, Online Streaming,
February 3-5, 2022, pages 226–233. SCITEPRESS.
Allen, T. (2015). Cp-nets: From theory to practice. In Inter-
national Conference on Algorithmic Decision Theory,
pages 555–560.
Allen, T., Siler, C., and Goldsmith, J. (2017). Learning tree-
structured cp-nets with local search. In FLAIRS 2017.
Balabanovic, M. and Shoham, Y. (1997). Fab: Content-
based, collaborative recommendation. Communica-
tions of the ACM, 40:66–72.
Bobadilla, J., Ortega, F., Hernando, A., and Guti
´
errez, A.
(2013). Recommender systems survey. Knowledge-
based systems, 46:109–132.
Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., and
Poole, D. (2004). Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference
statements. J. Artif. Intell. Res. (JAIR), 21:135–191.
Brafman, R. and Domshlak, C. (2009). Preference handling
- an introductory tutorial. AI Magazine, 30:58–86.
Carvalho, M. and Belo, O. (2016). Enriching what-if sce-
narios with olap usage preferences. In Proceedings
of the 8th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowl-
edge Management - Volume 1: KDIR, (IC3K 2016),
pages 213–220. INSTICC, SciTePress.
Chevaleyre, Y., Koriche, F., Mengin, J., and Zanuttini, B.
(2011). Learning ordinal preferences on multiattribute
domains: the case of cp-nets. Preference Learning.
Dechter, R., Cohen, D., et al. (2003). Constraint processing.
Morgan Kaufmann.
Deshpande, M. and Karypis, G. (2004). Item-based top-
n recommendation algorithms. ACM Transactions on
Information Systems - TOIS, 22:143–177.
Domshlak, C. (2002). Modeling and reasoning about pref-
erences with cp-nets.
Doyle, J. (2004). Prospects for preferences. Computational
Intelligence, 20:111–136.
F
¨
urnkranz, J. and H
¨
ullermeier, E. (2011). Preference
learning: An introduction. In Preference Learning.
Springer-Verlag.
Guerin, J., Allen, T., and Goldsmith, J. (2013). Learning
cp-net preferences online from user queries. volume
8176.
Ikemoto, Y. and Kuwabara, K. (2019). On-the-spot knowl-
edge refinement for an interactive recommender sys-
tem. In ICAART (2), pages 817–823.
Karimi, M., Jannach, D., and Jugovac, M. (2018). News
recommender systems–survey and roads ahead. Infor-
mation Processing & Management, 54(6):1203–1227.
Karpus, A., Noia, T. D., Tomeo, P., and Goczyla, K.
(2016). Rating prediction with contextual conditional
preferences. In Proceedings of the 8th International
Joint Conference on Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management - Vol-
ume 1: KDIR, (IC3K 2016), pages 419–424. IN-
STICC, SciTePress.
Koriche, F. and Zanuttini, B. (2010). Learning conditional
preference networks. Artificial Intelligence, 174:685–
703.
Kostkova, P., Jawaheer, G., and Weller, P. (2014). Model-
ing user preferences in recommender systems. ACM
Transactions on Interactive Intelligent Systems, 4:1–
26.
Labernia, F., Yger, F., Mayag, B., and Atif, J. (2018).
Query-based learning of acyclic conditional prefer-
ence networks from noisy data.
Labernia, F., Zanuttini, B., Mayag, B., Yger, F., and Atif, J.
(2017). Online learning of acyclic conditional prefer-
ence networks from noisy data. In 2017 IEEE Inter-
national Conference on Data Mining (ICDM), pages
247–256.
Liu, Z., Zhong, Z., Li, K., and Zhang, C. (2018). Struc-
ture learning of conditional preference networks based
on dependent degree of attributes from preference
database. IEEE Access, PP:1–1.
Mohammed, B., Mouhoub, M., Alanazi, E., and Sadaoui, S.
(2013). Data mining techniques and preference learn-
ing in recommender systems. Computer and Informa-
tion Science, 6(4):88.
Mouhoub, M., Marri, H. A., and Alanazi, E. (2021). Exact
learning of qualitative constraint networks from mem-
bership queries. CoRR, abs/2109.11668.
Shoham, Y. and Leyton-Brown, K. (2009). Multiagent Sys-
tems.
Thomason, R. H. (2014). The formalization of practical
reasoning: Problems and prospects. FLAP, 1(2):47–
76.
Thomason, R. H., Gabbay, D. M., and Guenthner, F. (2018).
The formalization of pratical reasoning: Problems and
prospects. In Handbook of Philosophical Logic, pages
105–132. Springer.
An Interactive System for Capturing Users’ Qualitative Preferences in Recommender Systems
295