Kanaris, L., Kokkinis, A., Liotta, A., and Stavrou, S.
(2017). Fusing bluetooth beacon data with wi-fi ra-
diomaps for improved indoor localization. Sensors,
17(4):812.
Kendall, A., Grimes, M., and Cipolla, R. (2015). Posenet: A
convolutional network for real-time 6-dof camera re-
localization. In Proceedings of the IEEE international
conference on computer vision, pages 2938–2946.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Li, Y., Crandall, D. J., and Huttenlocher, D. P. (2009). Land-
mark classification in large-scale image collections. In
2009 IEEE 12th International Conference on Com-
puter Vision, pages 1957–1964.
Lipka, M., Sippel, E., and Vossiek, M. (2019). An extended
kalman filter for direct, real-time, phase-based high
precision indoor localization. IEEE Access, 7:25288–
25297.
Obreja, S. G., Aboul-Hassna, T., Mocanu, F. D., and Vulpe,
A. (2018). Indoor localization using radio beacon
technology. In 2018 International Symposium on
Electronics and Telecommunications (ISETC), pages
1–4. IEEE.
Paul, A. S. and Wan, E. A. (2009). Rssi-based indoor
localization and tracking using sigma-point kalman
smoothers. IEEE Journal of selected topics in signal
processing, 3(5):860–873.
Ragusa, F., Furnari, A., Battiato, S., Signorello, G., and
Farinella, G. M. (2020). EGO-CH: Dataset and fun-
damental tasks for visitors behavioral understanding
using egocentric vision. Pattern Recognition Letters,
131:150–157.
R
¨
obesaat, J., Zhang, P., Abdelaal, M., and Theel, O.
(2017). An improved ble indoor localization with
kalman-based fusion: An experimental study. Sen-
sors, 17(5):951.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985).
Learning internal representations by error propaga-
tion. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science.
Sch
¨
onberger, J. L. and Frahm, J.-M. (2016). Structure-
from-motion revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR).
Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A.,
and Fitzgibbon, A. (2013). Scene coordinate regres-
sion forests for camera relocalization in rgb-d images.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2930–2937.
Subedi, S., Kwon, G.-R., Shin, S., Hwang, S.-s., and Pyun,
J.-Y. (2016). Beacon based indoor positioning sys-
tem using weighted centroid localization approach.
In 2016 Eighth International Conference on Ubiq-
uitous and Future Networks (ICUFN), pages 1016–
1019. IEEE.
Sun, X., Xie, Y., Luo, P., and Wang, L. (2017). A dataset
for benchmarking image-based localization. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7436–7444.
Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsen-
beck, S., and Cremers, D. (2017). Image-based local-
ization using lstms for structured feature correlation.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 627–637.
Wu, C. (2013). Towards linear-time incremental structure
from motion. In 2013 International Conference on
3D Vision-3DV 2013, pages 127–134. IEEE.
Xiao, J., Zhou, Z., Yi, Y., and Ni, L. M. (2016). A survey on
wireless indoor localization from the device perspec-
tive. ACM Comput. Surv., 49(2).
Xu, B., Zhu, X., and Zhu, H. (2019). An efficient in-
door localization method based on the long short-
term memory recurrent neuron network. IEEE Access,
7:123912–123921.
Zafari, F., Gkelias, A., and Leung, K. K. (2019). A survey
of indoor localization systems and technologies. IEEE
Communications Surveys & Tutorials, 21(3):2568–
2599.
Visual RSSI Fingerprinting for Radio-based Indoor Localization
77