Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press, Cumberland, UNITED
STATES.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In
Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, pages 2672–2680, Cambridge, MA, USA.
MIT Press.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. (2017). Improved training of wasser-
stein GANs. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R., editors, Proceedings of the 30th Annual Con-
ference on Neural Information Processing Systems.
Curran Associates, Inc.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). GANs trained by a two time-
scale update rule converge to a local nash equilib-
rium. In Guyon, I., von Luxburg, U., Bengio, S.,
Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R., editors, Proceedings of the 30th An-
nual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 6626–6637.
Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran,
B., and Madry, A. (2019). Adversarial Examples Are
Not Bugs, They Are Features. In Proceedings of the
32nd Annual Conference on Neural Information Pro-
cessing System, Vancouver, BC, Canada, Vancouver,
BC, Canada. Curran Associates, Inc.
Kaviani, S. and Sohn, I. (2021). Defense against neural
trojan attacks: A survey. Neurocomputing, 423:651–
667.
Krzywinski, M. and Altman, N. (2014). Visualizing sam-
ples with box plots. Nature Methods, 11(2):119–120.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.
(Nov./1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.
Liu, X. and Hsieh, C.-J. (2019). Rob-GAN: Generator, Dis-
criminator, and Adversarial Attacker. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11226–
11235.
Lucic, M., Kurach, K., Michalski, M., Bousquet, O., and
Gelly, S. (2018). Are GANs created equal? a large-
scale study. In Proceedings of the 32nd International
Conference on Neural Information Processing Sys-
tems, NIPS’18, pages 698–707, Red Hook, NY, USA.
Curran Associates Inc.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. (2018). Towards deep learning models re-
sistant to adversarial attacks. In Proceedings of the
6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. Open-
Review.net.
Miller, D. J., Xiang, Z., and Kesidis, G. (2020). Adversarial
Learning Targeting Deep Neural Network Classifica-
tion: A Comprehensive Review of Defenses Against
Attacks. Proceedings of the IEEE, 108(3):402–433.
Mirza, M. and Osindero, S. (2014). Conditional Generative
Adversarial Nets. arXiv:1411.1784 [cs, stat].
Odena, A., Olah, C., and Shlens, J. (2017). Conditional
Image Synthesis with Auxiliary Classifier GANs. In
Proceedings of the International Conference on Ma-
chine Learning, pages 2642–2651. PMLR.
Samangouei, P., Kabkab, M., and Chellappa, R. (2018).
Defense-gan: Protecting classifiers against adversarial
attacks using generative models. In Proceedings of the
6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. Open-
Review.net.
Thekumparampil, K. K., Khetan, A., Lin, Z., and Oh, S.
(2018). Robustness of conditional GANs to noisy
labels. In Bengio, S., Wallach, H. M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R., editors, Proceedings of the 31st Annual Con-
ference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montr
´
eal,
Canada, pages 10292–10303.
Wang, Z., Myles, P., and Tucker, A. (2019). Generating
and Evaluating Synthetic UK Primary Care Data: Pre-
serving Data Utility & Patient Privacy. In Proceed-
ings of the 2019 IEEE 32nd International Symposium
on Computer-Based Medical Systems (CBMS), pages
126–131, Cordoba, Spain. IEEE.
Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
MNIST: A Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv:1708.07747
[cs, stat].
Xu, Z., Li, C., and Jegelka, S. (2019). Robust GANs against
Dishonest Adversaries. In Proceedings of the Interna-
tional Conference on Machine Learning Workshop on
Security and Privacy of ML.
Yadav, D. and Salmani, S. (2019). Deepfake: A Survey
on Facial Forgery Technique Using Generative Adver-
sarial Network. In Proceedings of the 2019 Interna-
tional Conference on Intelligent Computing and Con-
trol Systems (ICCS), pages 852–857.
Zhou, B. and Kr
¨
ahenb
¨
uhl, P. (2019). Don’t let your Dis-
criminator be fooled. In Proceedings of the 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.
Resilience of GANs against Adversarial Attacks
397