Subsequently, the FIS system enables individual
forms (e.g. ripples) recognition. These issues will be
further investigated by the authors of this paper.
ACKNOWLEDGEMENTS
Funding: The work was funded by the Anthropocene
Priority Research Area budget under the program
"Excellence Initiative – Research University" at the
Jagiellonian University and by POB Research Centre
Cybersecurity and Data Science of Warsaw
University of Technology within the Excellence
Initiative Program - Research University (ID-UB).
REFERENCES
Moore, R., Lopes, J. (1999). Paper templates. In
TEMPLATE’06, 1st International Conference on
Template Production. SCITEPRESS.
Smith, J. (1998). The book, The publishing company.
London, 2
nd
edition.
Manna, A., Kundu, R., Kaplun, D. et al. (2021). A fuzzy
rank-based ensemble of CNN models for classification
of cervical cytology. Sci Rep 11, 14538
Zhou, J., Tian P., Chu Z., and Na S. (2018). Data Pre-
Analysis and Ensemble of Various Artificial Neural
Networks for Monthly Streamflow Forecasting. Water
10, no. 5: 628.
Han S., Jeong J., (2020). An Weighted CNN Ensemble
Model with Small Amount of Data for Bearing Fault
Diagnosis. Procedia Computer Science, V. 175
K. Simonyan, A. Zisserman, (2015). Very deep
convolutional networks for large-scale image
recognition. 3rd International Conference on Learning
Representations, ICLR 2015—Conference Track
Proceedings, pp. 1–14.
T. F. Stepinski, S. Ghosh, R. Vilalta, (2006). Automatic
Recognition of Landforms on Mars Using Terrain
Segmentation and Classification. In Proceedings of the
9th International Conference on Discovery Science,
LNAI 4265, pp. 255–266.
T. F. Stepinski, M. P. Mendenhall, B. D. Bue, (2009).
Machine cataloging of impact craters on Mars. Icarus,
203(1), pp. 77–87.
https://doi.org/10.1016/j.icarus.2009.04.026
S. Ghosh, T. F. Stepinski, R. Vilalta, (2010). Automatic
annotation of planetary surfaces with geomorphic
labels. IEEE Transactions on Geoscience and Remote
Sensing, 48(1), pp. 175–185. https://doi.org/10.1109/
TGRS.2009.2027113
C. Lee, (2019). Automated crater detection on Mars using
deep learning. Planetary and Space Science, 170(2015),
pp. 16–28. https://doi.org/10.1016/j.pss.2019.03.008
L. Bandeira, W. Ding, T. Stepinski, (2012). Detection of
sub-kilometer craters in high resolution planetary
images using shape and texture features. Advances in
Space Research, 49(1), pp. 64–74.
https://doi.org/10.1016/j.asr.2011.08.021
L. F. Palafox, C. W. Hamilton, S. P. Scheidt, A. M. Alvarez,
(2017). Automated detection of geological landforms
on Mars using Convolutional Neural Networks.
Computers and Geosciences, 101(January), pp. 48–56.
https://doi.org/10.1016/j.cageo.2016.12.015
A. M. Barrett, M. R. Balme, M. Woods, S. Karachalios, D.
Petrocelli, L. Joudrier, E. Sefton-Nash, (2022). NOAH-
H, a deep-learning, terrain classification system for
Mars: Results for the ExoMars Rover candidate
landing sites. Icarus, 371 (September 2021), 114701.
https://doi.org/10.1016/j.icarus.2021.114701
T. Nagle-Mcnaughton, T. McClanahan, L. Scuderi, (2020).
PlaNet: A Neural Network for Detecting Transverse
Aeolian Ridges on Mars. Remote Sensing, 12(21), pp.
1–15. https://doi.org/10.3390/rs12213607
T. Wilhelm, M. Geis, J. Püttschneider, T. Sievernich, T.
Weber, K. Wohlfarth, C. Wöhler, (2020). DoMars16k:
A Diverse Dataset for Weakly Supervised
Geomorphologic Analysis on Mars. Remote Sensing,
12(23), pp. 1–38. https://doi.org/10.3390/rs12233981
K. L. Wagstaff, Y. Lu, A. Stanboli, K. Grimes, T. Gowda,
J. Padams, (2018). Deep Mars: CNN Classification of
Mars Imagery for the PDS Imaging Atlas. 32nd AAAI
Conference on Artificial Intelligence, AAAI, pp. 7867–
7872.
B. Rothrock, J. Papon, R. Kennedy, M. Ono, M. Heverly,
C. Cunningham, (2016). SPOC: Deep Learning-based
terrain classification for Mars rover missions. AIAA
Space and Astronautics Forum and Exposition,
September 2016, pp. 1–12. https://doi.org/10.2514/
6.2016-5539
R. Cao, J. Zhu, W. Tu, Q. Li, J. Cao, B. Liu, Q. Zhang, G.
Qiu, (2018). Integrating Aerial and Street View Images
for Urban Land Use Classification. Remote Sensing,
10(10), 1553. https://doi.org/10.3390/rs10101553
B. Zhou, A. Lapedriza, A. Khosla, A. Olivia, A. Torralba.
(2017). Places: A 10 Million Image Database for Scene
Recognition. 2017 IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp.1452-1464.
https://doi.org/10.1109/TPAMI.2017.2723009
A. Martín, et al. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available
from tensorflow.org
M. Sugeno, Industrial applications of fuzzy control,
Elsevier Science Pub. Co., 1985
N. Siddique, H. Adeli. Computational Intelligence:
Synergies of Fuzzy Logic, Neural Networks and
Evolutionary Computing. Hoboken, NJ: Wiley, 2013.
Squyres, S. W., Arvidson, R. E., Bollen, D., Bell III J. F.,
Brückner, J., Cabrol, N. A., et al. (2006). Overview of
the Opportunity Mars Exploration Rover Mission to
Meridiani Planum: Eagle crater to Purgatory ripple. J.
Geophys. Res., 111, E12S12. doi:10.1029/2006JE002
771
Hynek, B. M., Arvidson, R. E., & Phillips, R. J. (2002).
Geologic setting and origin of Terra Meridiani hematite
Analysis of Ensemble of Neural Networks and Fuzzy Logic Classification in Process of Semantic Segmentation of Martian