immediate future scope to this approach is to extend
the hyperparameters we consider to tune.
ACKOWLEDGEMENTS
This work was supported by the Science Foundation
Ireland Grant #16/IA/4605.
REFERENCES
(2020). Tau vehicle type recognition competition.
Ahmadizar, F., Soltanian, K., AkhlaghianTab, F., and Tsou-
los, I. (2015). Artificial neural network development
by means of a novel combination of grammatical evo-
lution and genetic algorithm. Engineering Applica-
tions of Artificial Intelligence, 39:1–13.
Andonie, R. and Florea, A. (2020). Weighted random
search for CNN hyperparameter optimization. CoRR,
abs/2003.13300.
Assunc¸
˜
ao, F., Lourenc¸o, N., Machado, P., and Ribeiro, B.
(2018). Evolving the Topology of Large Scale Deep
Neural Networks, pages 19–34.
Baldominos, A., Saez, Y., and Isasi, P. (2018). Evolution-
ary design of convolutional neural networks for hu-
man activity recognition in sensor-rich environments.
Sensors, 18(4).
Banerjee, W. (2020). Train/Test Complexity and Space
Complexity of Linear Regression.
Bergstra, J., Yamins, D., and Cox, D. (2013). Making a
science of model search: Hyperparameter optimiza-
tion in hundreds of dimensions for vision architec-
tures. In Dasgupta, S. and McAllester, D., editors,
Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Ma-
chine Learning Research, pages 115–123, Atlanta,
Georgia, USA. PMLR.
Bindra, P., Kshirsagar, M., Ryan, C., Vaidya, G., Gupt,
K. K., and Kshirsagar, V. (2021). Insights into the
advancements of artificial intelligence and machine
learning, the present state of art, and future prospects:
Seven decades of digital revolution. In Satapathy,
S. C., Bhateja, V., Favorskaya, M. N., and Adilakshmi,
T., editors, Smart Computing Techniques and Applica-
tions, pages 609–621, Singapore. Springer Singapore.
Bochinski, E., Senst, T., and Sikora, T. (2017). ‘Hyper-
parameter optimization for convolutional neural net-
work committees based on evolutionary algorithms‘,
2017 IEEE International Conference on Image Pro-
cessing (ICIP), Beijing, China, Sept. 17-20, 2017,
3924-3928, available: http://dx.doi.org/10.1109/ICIP.
2017.8297018.
de Lima, R. H. R., Pozo, A. T. R., and Santana, R. (2019).
Automatic design of convolutional neural networks
using grammatical evolution. 2019 8th Brazilian Con-
ference on Intelligent Systems (BRACIS), pages 329–
334.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., and Zisserman, A. The PASCAL Visual Object
Classes Challenge 2012 (VOC2012) Results.
Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S.,
Hemberg, E., and O’Neill, M. (2017). Ponyge2:
Grammatical evolution in python. In Proceedings of
the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO ’17, page 1194–1201, New
York, NY, USA. Association for Computing Machin-
ery.
Ghosh, A., Sufian, A., Sultana, F., Chakrabarti, A., and De,
D. (2020). Fundamental Concepts of Convolutional
Neural Network, pages 519–567. Springer Interna-
tional Publishing, Cham.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition. CoRR,
abs/1512.03385.
Holzinger, A. (2018). From machine learning to explainable
ai. In 2018 World Symposium on Digital Intelligence
for Systems and Machines (DISA), pages 55–66.
Kayhan, O., Vredebrecht, B., and van Gemert, J. (2021).
DelftBikes, data underlying the publication: Hallu-
cination In Object Detection-A Study In Visual Part
Verification.
Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical report.
Kshirsagar, M., Lahoti, R., More, T., and Ryan, C. (2021).
Greecope: Green computing with piezoelectric effect.
pages 164–171.
Kshirsagar, M., More, T., Lahoti, R., Adgaonkar, S., Jain,
S., and Ryan, C. (2022). Rethinking traffic manage-
ment with congestion pricing and vehicular routing for
sustainable and clean transport. In Proceedings of the
14th International Conference on Agents and Artifi-
cial Intelligence - Volume 3: ICAART,, pages 420–
427. INSTICC, SciTePress.
Lan, G., Tomczak, J. M., Roijers, D. M., and Eiben,
A. (2022). Time efficiency in optimization with a
bayesian-evolutionary algorithm. Swarm and Evolu-
tionary Computation, 69:100970.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lima, J., Gracias, N., Pereira, H., and Rosa, A. (1996).
Fitness function design for genetic algorithms in cost
evaluation based problems. In Proceedings of IEEE
International Conference on Evolutionary Computa-
tion, pages 207–212.
Luo, Z., Branchaud-Charron, F., Lemaire, C., Konrad, J.,
Li, S., Mishra, A., Achkar, A., Eichel, J., and Jodoin,
P.-M. (2018). Mio-tcd: A new benchmark dataset for
vehicle classification and localization. IEEE Transac-
tions on Image Processing, 27(10):5129–5141.
Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink,
D., Francon, O., Raju, B., Shahrzad, H., Navruzyan,
HyperEstimator: Evolving Computationally Efficient CNN Models with Grammatical Evolution
67