nul, G., editors, Data and Applications Security and
Privacy XXVIII, Lecture Notes in Computer Science,
pages 382–389. Springer.
Bailas, C., Marsden, M., Zhang, D., O’Connor, N. E., and
Little, S. (2018). Performance of video processing at
the edge for crowd-monitoring applications. In 2018
IEEE 4th World Forum on Internet of Things (WF-
IoT), pages 482–487.
Chen, J., Zhang, Q., Zheng, W., and Xie, X. (2019). Effi-
cient and switchable CNN for crowd counting based
on embedded terminal. 7:51533–51541. Conference
Name: IEEE Access.
Chen, K., Gong, S., Xiang, T., and Loy, C. C. (2013). Cu-
mulative attribute space for age and crowd density es-
timation. page 8.
Chow, C. Y., Mokbel, M. F., and Liu, X. (2011). Spa-
tial cloaking for anonymous location-based services
in mobile peer-to-peer environments. GeoInformat-
ica, 15:351–380.
Chowdhury, M. J. M., Ferdous, M. S., Biswas, K.,
Chowdhury, N., and Muthukkumarasamy, V. (2020).
COVID-19 contact tracing: Challenges and future di-
rections. 8:225703–225729. Conference Name: IEEE
Access.
Danielis, P., Kouyoumdjieva, S. T., and Karlsson, G. (2017).
UrbanCount: Mobile crowd counting in urban envi-
ronments. In 2017 8th IEEE Annual Information Tech-
nology, Electronics and Mobile Communication Con-
ference (IEMCON), pages 640–648.
Depatla, S. and Mostofi, Y. (2018). Crowd counting through
walls using WiFi. In 2018 IEEE International Con-
ference on Pervasive Computing and Communications
(PerCom), pages 1–10. ISSN: 2474-249X.
Di Domenico, S., De Sanctis, M., Cianca, E., Colucci, P.,
and Bianchi, G. (2017). Lte-based passive device-free
crowd density estimation. In 2017 IEEE International
Conference on Communications (ICC), pages 1–6.
Dollar, P., Wojek, C., Schiele, B., and Perona, P. (2012).
Pedestrian detection: An evaluation of the state of the
art. 34(4):743–761. Conference Name: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence.
Du, D., Wen, L., Zhu, P., Fan, H., Hu, Q., Ling, H., Shah,
M., Pan, J., Al-Ali, A., Mohamed, A., Imene, B.,
Dong, B., Zhang, B., Nesma, B. H., Xu, C., Duan,
C., Castiello, C., Mencar, C., Liang, D., Kr
¨
uger, F.,
Vessio, G., Castellano, G., Wang, J., Gao, J., Abual-
saud, K., Ding, L., Zhao, L., Cianciotta, M., Saqib,
M., Almaadeed, N., Elharrouss, O., Lyu, P., Wang,
Q., Liu, S., Qiu, S., Pan, S., Al-Maadeed, S., Khan,
S. D., Khattab, T., Han, T., Golda, T., Xu, W., Bai,
X., Xu, X., Li, X., Zhao, Y., Tian, Y., Lin, Y., Xu, Y.,
Yao, Y., Xu, Z., Zhao, Z., Luo, Z., Wei, Z., and Zhao,
Z. (2020). Visdrone-cc2020: The vision meets drone
crowd counting challenge results.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2010). Object detection with dis-
criminatively trained part-based models. 32(9):1627–
1645. Conference Name: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.
Filippoupolitis, A., Oliff, W., and Loukas, G. (2016).
Bluetooth low energy based occupancy detection for
emergency management. In 2016 15th International
Conference on Ubiquitous Computing and Commu-
nications and 2016 International Symposium on Cy-
berspace and Security (IUCC-CSS), pages 31–38.
Francisco, S., Gruteser, M., and Grunwald, D. (2003).
Anonymous usage of location-based services through
spatial and temporal cloaking. page 31.
Harkins, D. (2008). Rfc 5297 - synthetic initialization vec-
tor (siv) authenticated encryption using the advanced
encryption standard (aes).
Idrees, H., Saleemi, I., Seibert, C., and Shah, M. (2013).
Multi-source multi-scale counting in extremely dense
crowd images. In 2013 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2547–
2554. ISSN: 1063-6919.
Janofsky, M. (1995). Federal parks chief calls ’million man’
count low. The New York times, page 6–6.
Jiang, H., Li, J., Zhao, P., Zeng, F., Xiao, Z., and Iyengar,
A. (2021). Location privacy-preserving mechanisms
in location-based services: A comprehensive survey.
54(1):4:1–4:36.
Jiang, X., Zhang, L., Xu, M., Zhang, T., Lv, P., Zhou, B.,
Yang, X., and Pang, Y. (2020). Attention scaling for
crowd counting. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pages 4705–4714.
Kannan, P. G., Venkatagiri, S. P., Chan, M. C., Ananda,
A. L., and Peh, L.-S. (2012). Low cost crowd count-
ing using audio tones. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems,
SenSys ’12, pages 155–168. Association for Comput-
ing Machinery.
Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez,
E., and Vivek, S. (2017). Faster secure multi-party
computation of aes and des using lookup tables. In
Gollmann, D., Miyaji, A., and Kikuchi, H., editors,
Applied Cryptography and Network Security, pages
229–249, Cham. Springer International Publishing.
Korany, B. and Mostofi, Y. (2021). Counting a stationary
crowd using off-the-shelf wifi. MobiSys 2021 - Pro-
ceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services, pages
202–214.
Li, J., Yan, H., Liu, Z., Chen, X., Huang, X., and Wong,
D. S. (2017). Location-sharing systems with enhanced
privacy in mobile online social networks. IEEE Sys-
tems Journal, 11:439–448.
Mousavi, S. M., Rabiee, H. R., Moshref, M., and Dabir-
moghaddam, A. (2007). MobiSim: A framework
for simulation of mobility models in mobile ad-hoc
networks. In Third IEEE International Conference
on Wireless and Mobile Computing, Networking and
Communications (WiMob 2007), pages 82–82. ISSN:
2160-4894.
Mumtaz, R., Zaidi, S. M. H., Shakir, M. Z., Shafi, U., Ma-
lik, M. M., Haque, A., Mumtaz, S., and Zaidi, S. A. R.
(2021). Internet of things (iot) based indoor air quality
sensing and predictive analytic—a covid-19 perspec-
tive. Electronics, 10(2).
Real-time Crowd Counting based on Wearable Ephemeral IDs
259