REFERENCES
Abhishek, T. S., Schilberg, D., & Arockia Doss, A. S.
(2021). Obstacle Avoidance Algorithms: A Review.
IOP Conference Series: Materials Science and
Engineering, 1012, 012052. https://doi.org/10.1088/17
57-899x/1012/1/012052
Arslan, O., & Koditschek, D. E. (2019). Sensor-based
reactive navigation in unknown convex sphere worlds.
International Journal of Robotics Research, 38(2–3),
196–223. https://doi.org/10.1177/0278364918796267
Beard, R., & McClain, T. (2003). Motion planning using
potential fields. Brigham Young University, BYU
ScholarsArchive, Faculty Publications 1313. Retrieved
from http://www.et.byu.edu/~beard/papers/preprints/
BeardMcLain03-potential.pdf
Castelnovi, M., Sgorbissa, A., & Zaccaria, R. (2006).
Ghost-Goal algorithm for reactive safe navigation in
outdoor environments. In T. Arai et al. (Eds.) (Ed.),
Intelligent Autonomous Systems 9 (pp. 49–56). IOS
Press.
Chakravarthy, A., & Ghose, D. (1998). Obstacle avoidance
in a dynamic environment: A collision cone approach.
IEEE Transactions on Systems, Man, and Cybernetics
Part A:Systems and Humans., 28(5), 562–574.
https://doi.org/10.1109/3468.709600
Connolly, C. I., & Grupen, R. A. (1993). The applications
of harmonic functions to robotics. Journal of Robotics
Systems, 10(7), 931–946. https://doi.org/10.1109/IS
IC.1992.225141
De Medio, C., & Oriolo, G. (1991). Robot Obstacle
Avoidance Using Vortex Fields. Advances in Robot
Kinematics, 227–235. https://doi.org/10.1007/978-3-
7091-4433-6_26
Filippidis, I., & Kyriakopoulos, K. J. (2011). Adjustable
navigation functions for unknown sphere worlds. In
Proceedings of the IEEE Conference on Decision and
Control (pp. 4276–4281). https://doi.org/10.1109/
CDC.2011.6161176
Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic
window approach to collision avoidance. IEEE
Robotics and Automation Magazine, 4(1), 23–33.
https://doi.org/10.1109/100.580977
Guldner, J., & Utkin, V. I. (1995). Sliding Mode Control
for Gradient Tracking and Robot Navigation Using
Artificial Potential Fields. IEEE Transactions on
Robotics and Automation, 11(2), 247–254.
https://doi.org/10.1109/70.370505
Güldner, J., & Utkin, V. I. (1996). Tracking the gradient of
artificial potential fields: Sliding mode control for
mobile robots. International Journal of Control, 63(3),
417–432. https://doi.org/10.1080/00207179608921850
Haddadin, S., Urbanek, H., Parusel, S., Burschka, D.,
Roßmann, J., Albu-Schäffer, A., & Hirzinger, G.
(2010). Real-time reactive motion generation based on
variable attractor dynamics and shaped velocities. In
IEEE/RSJ 2010 International Conference on Intelligent
Robots and Systems (pp. 3109–3116). Taipei.
https://doi.org/10.1109/IROS.2010.5650246
Hossain, T., Habibullah, H., Islam, R., & Padilla, R. V.
(2021). Local path planning for autonomous mobile
robots by integrating modified dynamic-window
approach and improved follow the gap method. Journal
of Field Robotics, (December), 1–16. https://doi.org/
10.1002/rob.22055
Khatib, O. (1986). Real-time obstacle avoidance for
manipulators and mobile robots. International Journal
of Robotics Research, 5(1), 90–98.
Koppenborg, M., Nickel, P., Naber, B., Lungfiel, A., &
Huelke, M. (2017). Effects of movement speed and
predictability in human – robot collaboration. Human
Factors and Ergonomics in Manufacturing & Service
Industries, 27(4), 197–209. https://doi.org/10.1002/
hfm.20703
LaValle, S. M. (2006). Planning algorithms. Planning
Algorithms, 9780521862, 1–826. https://doi.org/10.10
17/CBO9780511546877
Long, Z. (2020). Virtual target point-based obstacle-
avoidance method for manipulator systems in a
cluttered environment. Engineering Optimization,
52(11), 1957–1973. https://doi.org/10.1080/0305215
X.2019.1681986
Mauro, S., Scimmi, L. S., & Pastorelli, S. (2017). Collision
avoidance algorithm for collaborative robotics.
International Journal of Automation Technology,
11(3), 481–489. https://doi.org/10.1007/978-3-319-
61276-8_38
Melchiorre, M., Scimmi, L. S., Mauro, S., & Pastorelli, S.
P. (2021). Vision-based control architecture for
human–robot hand-over applications. Asian Journal of
Control, 23(1), 105–117. https://doi.org/10.1002/asjc.2
480
Melchiorre, M., Scimmi, L. S., Pastorelli, S. P., & Mauro,
S. (2019). Collison Avoidance using Point Cloud Data
Fusion from Multiple Depth Sensors: A Practical
Approach. 2019 23rd International Conference on
Mechatronics Technology, ICMT 2019. https://doi.org/
10.1109/ICMECT.2019.8932143
Murphy, R. R. (2000). Introduction to AI robotics.
Cambridge, Massachusetts: The MIT Press.
Paromtchik, I. E., & Nassal, U. M. (1995). Reactive Motion
Control for an Omnidirectional Mobile Robot. Proc. of
the Third European Control Conference, 5–8.
Pozna, C., Troester, F., Precup, R. E., Tar, J. K., & Preitl,
S. (2009). On the design of an obstacle avoiding
trajectory: Method and simulation. Mathematics and
Computers in Simulation, 79(7), 2211–2226.
https://doi.org/10.1016/j.matcom.2008.12.015
Qian, K., Ma, X., Dai, X., & Fang, F. (2010). Socially
acceptable pre-collision safety strategies for human-
compliant navigation of service robots. Advanced
Robotics, 24(13), 1813–1840. https://doi.org/10.1163/
016918610X527176
Ren, J., Mcisaac, K. A., Patel, R. V, & Peters, T. M. (2007).
A potential field model using generalized sigmoid
functions. Construction,
37(2), 477–484.
Rimon, E., & Koditschek, D. E. (1992). Exact Robot
Navigation using Artificial Potential Functions. IEEE
ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics