In Proceedings of the Eighth Workshop on Mining and
Learning with Graphs, pages 18–25.
Angles, R. (2018). The property graph database model. In
AMW.
Apostolico, A. and Drovandi, G. (2009). Graph compres-
sion by bfs. Algorithms, 2(3):1031–1044.
Appuswamy, R., Le Brigand, K., Barbry, P., Antonini, M.,
Madderson, O., Freemont, P., McDonald, J., and Hei-
nis, T. (2019). Oligoarchive: Using dna in the dbms
storage hierarchy. In CIDR.
Bancroft, C., Bowler, T., Bloom, B., and Clelland, C. T.
(2001). Long-term storage of information in dna. Sci-
ence, 293(5536):1763–1765.
Besta, M., Peter, E., Gerstenberger, R., Fischer, M., Pod-
stawski, M., Barthels, C., Alonso, G., and Hoefler, T.
(2019). Demystifying graph databases: Analysis and
taxonomy of data organization, system designs, and
graph queries. arXiv preprint arXiv:1910.09017.
Boldi, P. and Vigna, S. (2004). The webgraph framework
i: compression techniques. In Proceedings of the 13th
international conference on World Wide Web, pages
595–602.
Bornholt, J., Lopez, R., Carmean, D. M., Ceze, L., Seelig,
G., and Strauss, K. (2016). A dna-based archival stor-
age system. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
637–649.
Buneman, P., Khanna, S., Tajima, K., and Tan, W.-C.
(2004). Archiving scientific data. ACM Transactions
on Database Systems (TODS), 29(1):2–42.
Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A com-
prehensive survey of graph embedding: Problems,
techniques, and applications. IEEE Transactions on
Knowledge and Data Engineering, 30:1616–1637.
Carlson, R. (2014). Time for new dna synthesis and se-
quencing cost curves. Synthetic Biology News.
Church, G. M., Gao, Y., and Kosuri, S. (2012). Next-
generation digital information storage in dna. Science,
337(6102):1628–1628.
Claude, F. and Navarro, G. (2010). Fast and compact web
graph representations. ACM Transactions on the Web
(TWEB), 4(4):1–31.
Clelland, C. T., Risca, V., and Bancroft, C. (1999). Hiding
messages in dna microdots. Nature, 399(6736):533–
534.
Das, S., Srinivasan, J., Perry, M., Chong, E. I., and Baner-
jee, J. (2014). A tale of two graphs: Property graphs
as rdf in oracle. In EDBT, pages 762–773.
Davoudian, A., Chen, L., and Liu, M. (2018). A survey
on nosql stores. ACM Computing Surveys (CSUR),
51(2):1–43.
Doorn, P. and Tjalsma, H. (2007). Introduction: archiving
research data. Archival science, 7(1):1–20.
Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G.,
Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al.
(2009). Real-time dna sequencing from single poly-
merase molecules. Science, 323(5910):133–138.
Epstein, J. M. (2008). Why model? Journal of artificial
societies and social simulation, 11(4):12.
Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeP-
roust, E. M., Sipos, B., and Birney, E. (2013).
Towards practical, high-capacity, low-maintenance
information storage in synthesized dna. nature,
494(7435):77–80.
Heinis, T. and Alnasir, J. J. (2019). Survey of informa-
tion encoding techniques for dna. arXiv preprint
arXiv:1906.11062.
Kosuri, S. and Church, G. M. (2014). Large-scale de novo
dna synthesis: technologies and applications. Nature
methods, 11(5):499–507.
Lee, H. H., Kalhor, R., Goela, N., Bolot, J., and Church,
G. M. (2018). Enzymatic dna synthesis for digital in-
formation storage. bioRxiv, page 348987.
Lehne, B. and Schlitt, T. (2009). Protein-protein inter-
action databases: keeping up with growing interac-
tomes. Human genomics, 3(3):1–7.
Liu, Y., Safavi, T., Dighe, A., and Koutra, D. (2016). Graph
summarization methods and applications: A survey.
arXiv: Information Retrieval.
Neiman, M. S. (1964). Some fundamental issues of micro-
miniaturization. Radiotekhnika, 1(1):3–12.
Ng, C. C. A., Tam, W. M., Yin, H., Wu, Q., So, P.-K.,
Wong, M. Y.-M., Lau, F., and Yao, Z.-P. (2021). Data
storage using peptide sequences. Nature Communica-
tions, 12(1):1–10.
Organick, L., Ang, S. D., Chen, Y.-J., Lopez, R., Yekhanin,
S., Makarychev, K., Racz, M. Z., Kamath, G.,
Gopalan, P., Nguyen, B., et al. (2018). Random access
in large-scale dna data storage. Nature biotechnology,
36(3):242–248.
Sakr, S., Bonifati, A., Voigt, H., Iosup, A., Ammar, K.,
Angles, R., Aref, W., Arenas, M., Besta, M., Boncz,
P. A., et al. (2021). The future is big graphs: a com-
munity view on graph processing systems. Communi-
cations of the ACM, 64(9):62–71.
Schwarz, M., Welzel, M., Kabdullayeva, T., Becker, A.,
Freisleben, B., and Heider, D. (2020). Mesa: auto-
mated assessment of synthetic dna fragments and sim-
ulation of dna synthesis, storage, sequencing and pcr
errors. Bioinformatics, 36(11):3322–3326.
Seeman, N. C. (2003). Dna in a material world. Nature,
421(6921):427–431.
Simecek, I. (2009). Sparse matrix computations using the
quadtree storage format. In 2009 11th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, pages 168–173.
Whitlock, M. C., McPeek, M. A., Rausher, M. D., Riese-
berg, L., and Moore, A. J. (2010). Data archiving.
The American Naturalist, 175(2):145–146.
Modelling of Efficient Graph-aware Data Storage using DNA
189