D. S et al., “FSP1 is a glutathione-independent ferroptosis
suppressor,” Nature, vol. 575, no. 7784, pp. 693–698,
Nov. 2019, doi: 10.1038/S41586-019-1707-0.
G. G et al., “Cobalt nanoparticles trigger ferroptosis-like
cell death (oxytosis) in neuronal cells: Potential
implications for neurodegenerative disease,” FASEB
journal : official publication of the Federation of
American Societies for Experimental Biology, vol. 34,
no. 4, pp. 5262–5281, Apr. 2020, doi:
10.1096/FJ.201902191RR.
K. SS et al., “N-acetylcysteine targets 5 lipoxygenase-
derived, toxic lipids and can synergize with
prostaglandin E 2 to inhibit ferroptosis and improve
outcomes following hemorrhagic stroke in mice,”
Annals of neurology, vol. 84, no. 6, pp. 854–872, Dec.
2018, doi: 10.1002/ANA.25356.
L. D et al., “Quercetin Alleviates Ferroptosis of Pancreatic
β Cells in Type 2 Diabetes,” Nutrients, vol. 12, no. 10,
pp. 1–15, Oct. 2020, doi: 10.3390/NU12102954.
L. E, de G.-H. A, W. M, van den H. L, M. L, and B. H,
“Altered status of glutathione and its metabolites in
cystinotic cells,” Nephrology, dialysis,
transplantation : official publication of the European
Dialysis and Transplant Association - European Renal
Association, vol. 20, no. 9, pp. 1828–1832, Sep. 2005,
doi: 10.1093/NDT/GFH932.
L. S, D. J, and T. M, “Low antioxidant enzyme gene
expression in pancreatic islets compared with various
other mouse tissues,” Free radical biology & medicine,
vol. 20, no. 3, pp. 463–466, 1996, doi: 10.1016/0891-
5849(96)02051-5.
L. Y et al., “Disulfiram/Copper Induces Antitumor Activity
against Both Nasopharyngeal Cancer Cells and Cancer-
Associated Fibroblasts through ROS/MAPK and
Ferroptosis Pathways,” Cancers, vol. 12, no. 1, Jan.
2020, doi: 10.3390/CANCERS12010138.
M. B, S. R, S. C, M. T, and N. P, “Cystine accumulation
attenuates insulin release from the pancreatic β-cell due
to elevated oxidative stress and decreased ATP levels,”
The Journal of physiology, vol. 593, no. 23, pp. 5167–
5182, Dec. 2015, doi: 10.1113/JP271237.
N. G and G. W, “Nephropathic cystinosis: late
complications of a multisystemic disease,” Pediatric
nephrology (Berlin, Germany), vol. 23, no. 6, pp. 863–
878, Jun. 2008, doi: 10.1007/S00467-007-0650-8.
N. P, R. E, A. F, K. M, C. A, and C. R, “Reactive oxygen
and nitrogen species generation, antioxidant defenses,
and β-cell function: a critical role for amino acids,” The
Journal of endocrinology, vol. 214, no. 1, pp. 11–20,
Jul. 2012, doi: 10.1530/JOE-12-0072.
N. S, S. H, A. R, T. T, and Y. T, “Regulation of the
susceptibility to oxidative stress by cysteine availability
in pancreatic beta-cells,” American journal of
physiology. Cell physiology, vol. 295, no. 2, Aug. 2008,
doi: 10.1152/AJPCELL.00203.2008.
P. de F. G. L et al., “N-acetyl-cysteine is associated to renal
function improvement in patients with nephropathic
cystinosis,” Pediatric nephrology (Berlin, Germany),
vol. 29, no. 6, pp. 1097–1102, 2014, doi:
10.1007/S00467-013-2705-3.
R. J, H. HH, C. H, R. SR, and D. R, “Colorimetric
ferrozine-based assay for the quantitation of iron in
cultured cells,” Analytical biochemistry, vol. 331, no. 2,
pp. 370–375, Aug. 2004, doi:
10.1016/J.AB.2004.03.049.
S. BR et al., “Ferroptosis: A Regulated Cell Death Nexus
Linking Metabolism, Redox Biology, and Disease,”
Cell, vol. 171, no. 2, pp. 273–285, Oct. 2017, doi:
10.1016/J.CELL.2017.09.021.
S. K et al., “Mitochondrial reactive oxygen species reduce
insulin secretion by pancreatic beta-cells,” Biochemical
and biophysical research communications, vol. 300,
no. 1, pp. 216–222, 2003, doi: 10.1016/S0006-
291X(02)02832-2.
S. R, M. B, N. P, and M. T, “Lysosomal cystine
accumulation promotes mitochondrial depolarization
and induction of redox-sensitive genes in human kidney
proximal tubular cells,” The Journal of physiology, vol.
594, no. 12, pp. 3353–3370, Jun. 2016, doi:
10.1113/JP271858.
W. A. Gahl, J. G. Thoene, and J. A. Schneider,
“Cystinosis,”
http://dx.doi.org/10.1056/NEJMra020552, vol. 347,
no. 2, pp. 111–11121, Oct. 2009, doi:
10.1056/NEJMRA020552.
X. Y et al., “Ferroptosis: process and function,” Cell death
and differentiation, vol. 23, no. 3, pp. 369–379, Mar.
2016, doi: 10.1038/CDD.2015.158.
Y. WS et al., “Regulation of ferroptotic cancer cell death
by GPX4,” Cell, vol. 156, no. 1–2, pp. 317–331, 2014,
doi: 10.1016/J.CELL.2013.12.010.
Z. Y et al., “mTORC1 couples cyst(e)ine availability with
GPX4 protein synthesis and ferroptosis regulation,”
Nature communications, vol. 12, no. 1, Dec. 2021, doi:
10.1038/S41467-021-21841-W.
Z. Y, “The Protective Effects of Cryptochlorogenic Acid on
β-Cells Function in Diabetes in vivo and vitro via
Inhibition of Ferroptosis,” Diabetes, metabolic
syndrome and obesity: targets and therapy, vol. 13, pp.
1921–1931, 2020, doi: 10.2147/DMSO.S249382.