Noise Simulation for the Improvement of Training Deep Neural Network for Printer-Proof Steganography
Telmo Cunha, Luiz Schirmer, João Marcos, Nuno Gonçalves, Nuno Gonçalves
2024
Abstract
In the modern era, images have emerged as powerful tools for concealing information, giving rise to innovative methods like watermarking and steganography, with end-to-end steganography solutions emerging in recent years. However, these new methods presented some issues regarding the hidden message and the decreased quality of images. This paper investigates the efficacy of noise simulation methods and deep learning methods to improve the resistance of steganography to printing. The research develops an end-to-end printer-proof steganography solution, with a particular focus on the development of a noise simulation module capable of overcoming distortions caused by the transmission of the print-scan medium. Through the development, several approaches are employed, from combining several sources of noise present in the physical environment during printing and capture by image sensors to the introduction of data augmentation techniques and self-supervised learning to improve and stabilize the resistance of the network. Through rigorous experimentation, a significant increase in the robustness of the network was obtained by adding noise combinations while maintaining the performance of the network. Thereby, these experiments conclusively demonstrated that noise simulation can provide a robust and efficient method to improve printer-proof steganography.
DownloadPaper Citation
in Harvard Style
Cunha T., Schirmer L., Marcos J. and Gonçalves N. (2024). Noise Simulation for the Improvement of Training Deep Neural Network for Printer-Proof Steganography. In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM; ISBN 978-989-758-684-2, SciTePress, pages 179-186. DOI: 10.5220/0012272300003654
in Bibtex Style
@conference{icpram24,
author={Telmo Cunha and Luiz Schirmer and João Marcos and Nuno Gonçalves},
title={Noise Simulation for the Improvement of Training Deep Neural Network for Printer-Proof Steganography},
booktitle={Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM},
year={2024},
pages={179-186},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012272300003654},
isbn={978-989-758-684-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM
TI - Noise Simulation for the Improvement of Training Deep Neural Network for Printer-Proof Steganography
SN - 978-989-758-684-2
AU - Cunha T.
AU - Schirmer L.
AU - Marcos J.
AU - Gonçalves N.
PY - 2024
SP - 179
EP - 186
DO - 10.5220/0012272300003654
PB - SciTePress