ClusterComm: Discrete Communication in Decentralized MARL Using Internal Representation Clustering

Robert Müller, Hasan Turalic, Thomy Phan, Michael Kölle, Jonas Nüßlein, Claudia Linnhoff-Popien

2024

Abstract

In the realm of Multi-Agent Reinforcement Learning (MARL), prevailing approaches exhibit shortcomings in aligning with human learning, robustness, and scalability. Addressing this, we introduce ClusterComm, a fully decentralized MARL framework where agents communicate discretely without a central control unit. ClusterComm utilizes Mini-Batch-K-Means clustering on the last hidden layer’s activations of an agent’s policy network, translating them into discrete messages. This approach outperforms no communication and competes favorably with unbounded, continuous communication and hence poses a simple yet effective strategy for enhancing collaborative task-solving in MARL.

Download


Paper Citation


in Harvard Style

Müller R., Turalic H., Phan T., Kölle M., Nüßlein J. and Linnhoff-Popien C. (2024). ClusterComm: Discrete Communication in Decentralized MARL Using Internal Representation Clustering. In Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART; ISBN 978-989-758-680-4, SciTePress, pages 305-312. DOI: 10.5220/0012384300003636


in Bibtex Style

@conference{icaart24,
author={Robert Müller and Hasan Turalic and Thomy Phan and Michael Kölle and Jonas Nüßlein and Claudia Linnhoff-Popien},
title={ClusterComm: Discrete Communication in Decentralized MARL Using Internal Representation Clustering},
booktitle={Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART},
year={2024},
pages={305-312},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012384300003636},
isbn={978-989-758-680-4},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART
TI - ClusterComm: Discrete Communication in Decentralized MARL Using Internal Representation Clustering
SN - 978-989-758-680-4
AU - Müller R.
AU - Turalic H.
AU - Phan T.
AU - Kölle M.
AU - Nüßlein J.
AU - Linnhoff-Popien C.
PY - 2024
SP - 305
EP - 312
DO - 10.5220/0012384300003636
PB - SciTePress