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Abstract: In our former work we have given a high-level formal model of a cloud service architecture in terms of a novel
formal method approach which combines the advantages of the mathematically well-founded software engi-
neering method calledbstract state machineand of the calculus of mobile agents calleubient calculus
This paper presents an extension for this cloud model which enables client-to-client interaction in an almost
direct way, so that the involvement of cloud services is transparent to the users. The discussed solution for
transparent use of services is a kind of switching service, where registered cloud users communicate with each
other, and the only role the cloud plays is to switch resources from one client to another.

1 INTRODUCTION The rest of the paper is organized as follows.
Section 2 informally summarizes our formerly pre-
In (Bbsa, 2012b) we proposed a new formal sented high-levelcloud model. Section 3 gives a short
method approach which is able to incorporate the overview on the related work as well as ambient cal-
major advantages of thabstract state machines culusand ambient ASM. Section 4 introduces the def-
(ASMs)(Borger and Stark, 2003) and ambient cal- initions of some non-basic ambient capability actions
culus(Cardelli and Gordon, 2000). Namely, one can Which are applied in the latter sections. Section 5 de-
describe formal models of distributed systems includ- scribes the original model extended with the CTCI
ing mobile components in two abstraction layers such functions. Section 6 demonstrates how a request for
that while the algorithms of executable components & shared service is processed by the discussed model.
(agent3 are specified in terms of ASMs; their com- Finally, Section 7 concludes this paper.
munication topology, locality and mobility described
with the terms of ambient calculus in our method.
In (Bbsa, 2013) we presented a high-level formal
model of a cloud service architecture in terms of this 2 OVERVIEW ON OUR MODEL
new method. In this paper, we extended this for-
mal model with &Client-to-Client Interaction (CTCI)  Roughly our formal cloud model can be regarded as
mechanism via a cloud architecture. Our envisioned a pool of resources equipped with some infrastructure
cloud feature can be regarded as a special kind ofservices, see Figure 1a. Depending whether these ab-
services we calthannelsvia which registered cloud  stract resources represent only physical hardware and
users can interact with each other in almost direct way virtual resources or entire computing platforms the
and, what is more, they are able to share available model can be an abstractionlofrastructure as a Ser-
cloud resources among each other as well. vice (laaS)or Platform as a Service (PaaSkespec-
Some use cases, which may claim the need of suchtively. The basic hardware (and software) infrastruc-
CTCl functions, can be for instance: dissemination of ture is owned by the cloud provider, whereas the soft-
large or frequently updated data whose direct trans- wares running on the resources are owned by some
mitting meets some limitations; or connecting devices users. We assume that these softwares may be offered
of the same user (in the later case an additional chal-as aserviceand thus used by other users. Accord-
lenge can be during a particular interpretation of the ingly, we apply a relaxed definition of the term service
modeled CTCI functions, how to wrap and transport cloud here, where a user who owns some applications
local area protocols, likepnpvia the cloud). running on some cloud resources may become a soft-
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Figure 1: Application of our Model According to Different &earios.

ware service provider at the same time. Thus, from available for this particular user in a kind of personal
this aspect the model can be regarded as an abstracuser area by the cloud. Later, when the subscribed
tion of a mixture ofSoftware as a Service (Saas)d user sends a service request, it is checked whether the
of laaS (or a mixture of SaaS and PaaS). reguested service operations are allowed by any ser-
We make a distinction between two kinds of cloud vice plot. If a requested operation is permitted then it
users. The normalsersare registered in the cloud is triggered to perform, otherwise it is blocked as long
and they subscribe to and use some (software) ser-as a plot may allow to trigger it in the future. Each
vices available in the cloud. Treervice ownersre triggered operation request is authorized to enter into
users as well, but they also rent some clogsburces - - the user area of the corresponding service owner to
to deploy someservice instancesn them. whom the requested service operation belongs. Here
For representing service instances, we adopt thea scheduler mechanism assigns to the request a one-
formal model ofAbstract State Services (A3 (Ma off access to a cloud resource on which an instance
etal., 2008; Ma et al., 2009). In an A®e have views  of the corresponding service runs. Then the service
on some hidden database layer that are equippedoperation requestis forwarded to this resource, where
with service operationslenoted by unique identifers the request is processed. Finally, the outcome of the
01,...,0n. These service operations are actually what performed operation returns to the area of the initiator
are exported from a service to be used by other sys-user, where the outcome is either stored or send fur-
tems or directly by users. The definition of AsSalso ther to a given client device. In this way, the service
includes thepure data servicegservice operationsare  owners have direct influence to the service usage of
just database queries) and thee functional services  particular users via the provided service plots.
(operation without underlying database layer) as ex-  Regarding our proposed cloud model one of the
treme cases. major questions can be whether it is adaptable to the
In our approach the model assumes that each serdeading cloud solutions (e.g.: Amazon S3, Microsoft
vice owner has a dedicated contact point which re- Azure, IBM SmartCloud, etc.). Since due to the ap-
sides out of the cloud. Itis a special kind of client that plied ambient concept the relocation of the system
can also act as a server for the cloud itself in some componentsis trivial, we can apply our model accord-
cases. Namely, if a registered cloud user intends toing to different scenarios. For instance, all our novel
subscribe to a particular service, she sends a subscripfunctions including the client-to-client interaction can
tion request to the cloud, which may forward it to such be shifted to the client side and wrapped into a mid-
a special kind of client belonging to the correspond- dleware software which takes place between the end
ing service owner. This client responses with a spe- users and cloud in order to control the interactions of
cial kind of action scheme calleskrvice plot which them, see Figure 1b. The specified communication
algebraically defines and may constrain how the ser- topology among the distributed system components
vice can be used by the udete.g.: it determines the  remains the same in this later case.
permitted combination of service operations). This
special kind of client is abstract in the current model.
The received service plots, which may be com- 3 RELATED WORK
posed individually for each subscribing user by ser-

vice owners, are collected with other cloud functions . . .
It is beyond the scope of this paper to discuss the

LFor an algebraic formalization of plokdeene algebras ~ Vvast literature of formal modeling mobile systems
with tests (KATs]Kozen, 1997) has been applied. and SOAs, but we refer to some surveys on these
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fields (Boudol et al., 1994; Cardelli, 1999; Schewe Table 1: The Mobility and Communication Primitives of

and Thalheim, 2007). Ambient Calculus.
One of the first examples for representing various ~pPQ Rr:= processes
kinds of published services as a pool of resources, like  P|Q parallel composition
in our model, was in (Tanaka, 2003)_ n[P] an ambient named with P in its body
In (Ma et al., 2012) a formal high-level specifica- ~ "P restriction of name within P
tions of service cloud is given. This work is similarto |, :ZZEE‘;E‘;?E;‘;WOCQSS)
ours in some aspects. Namely, it applies the language- (capability) actiorM thenP
independent A5 with algebraic plots for represent- (x).P input action (the input value is bound
ing services. But it principally focuses on service toxin P)
specification, service discovery, service composition (@ async output action

and orchestration of service-based processes; and it MMz ....McP apathformation on actions thén
does not apply any formal approach to describe ei-

. . . . M::= capabilities
ther static or dynamically changing structures of dis- | entry capability (to enten)
tributed SyStem co_mpon_ents. ) ouTn exit capability (to exin)
In the rest of this section, we give a short summary  openn open capability (to dissolves boundary)

on ambient calculus and ambient ASM, respectively,
in order to facilitate the understanding of the latter
sections. B iman Gmaas
Ambients. An ambient is written ag[P], wheren is
3.1 Ambient Calculus its name and a proceBsis running inside itbody(P

may be running even ifiis moving):
The ambient calculus was inspired by the
calculus (Milner et al., 1992), but it focuses primarily P—Q=n[P]—n[Q]
on the concept of locality and process mobility across Ambients can be embedded into each other such that
well defined boundaries instead of channel mobility they can form a hierarchical tree structure. An ambi-
astrcalculus. The concept @mbienfwhich has the  ent body is interpreted as the parallel composition of
following main features, is central to the calculus: its elements (its local ambients and its local agents)

e An ambient is defined as a bounded place where and can be written as follows:

computation happens. P hereP
¢ Each ambient has a name, which can be used to "Rl TRl ] [ m - [T whereR #ml.. ]

control access (entry, exit, communication, etc.). Replication. !P denotes the unlimited replication of
Ambient names may not be unique. the process P. It is equivalent Bb| !P. There is no
e An ambient can be nested inside other ambients. eduction rule for P (the termP under ! cannot start
until it is expanded out aB | !P).
(Name) Restriction. (v n)P creates a new (unique)
namen within a scopeP. n can be used to name am-
bients and to operate on ambients by name. The name
restriction is transparent to reduction:

e An ambient can be moved. When an ambi-
ent moves, everything inside it moves with it
(the boundary around an ambient determines what
should move together with it).

The ambient calculus includes only the mobility

and communication primitives depicted in Table 1. P— Q= (VvnNP— (vN)Q

The main syntactic categories geocesseginclud-  pyrthermore, one must be careful with the term
ing both ambients and agents) amttions(including yy )P, because it provides a fresh value for each
both capabilitiesand communication primitivgs A replica, so

reduction relatiolP — Q describes the evolution of

a termP into a new termQ (andP —* Q denotes (vn)IP #£I(vn)P

a reflexive and transitive reduction relation fréhio
Q). A summarized explanation of the primitives and
the relevant reduction rules is given below:

Parallel Composition. Parallel execution is denoted
by a commutative and associative binary operator
which complies the rule:

Inactivity. 0O is the process that does nothing.

Actions and Capabilities. An action defined in the
calculus can precede a proce®s P cannot start

to execute until the preceding actions are performed.
Those actions that are able to control the movements
of ambients in the hierarchy or to dissolve ambient

2The parallelism in ambient calculus is always inter- boundaries are restricted by capabilities. By using
preted viainterleaving capabilities an ambient can allow some processes to
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perform certain operations without publishing its true
name to them (see the entry, exit and open below).
Communication Primitives. Theinput actionsand
the asynchronous output actionsan realize local
anonymous communication within ambients, e.g.:

(x).P | (8) — P(x/a)
where an input action captures the informatian
available in its local environment and binds it to the

variablex within a scopeP. In case of the model-
ing of a real life system, communication of (ambient)

names should be rather rare, since knowing the name

of an ambient gives a lot of control over it. Instead,
it should be common to exchange restricted capabili-
ties to control interactions between ambients (from a
capability the ambient name cannot be retrieved).
Entry Capability. The capability actionN m in-
structs the surrounding ambient to enter a sibling am-
bient nameadn. If a sibling ambientm does not exist,
the operation blocks until such a sibling appears.
more than one sibling ambient calledcan be found,
any of them can be chosen. The reduction rule for this
action is:

n[INmP[Q]|mR]— m[n[P[Q]|R]

Exit Capability. The capability action OT min-
structs the surrounding ambient to exit its parent am-
bient calledn. If the parentis not named, the opera-
tion blocks until such a parent appears. The reduction
rule is:

mn[OuTmp|QJ[R]—n[P[Q][m[R]

Open Capability. The capability action ®eN n dis-
solves the boundary of an ambient nanmelbcated
in the same ambient asF@N n. If such an ambient
cannot be found in the local environment oPEN N,
the operation blocks until an ambient calledppears.
The relevant rule is:

OPENN.P|N[Q]— P|Q

Path Formation on Actions. It is possible to com-
bine multiple actions (e.g.: capabilities and input ac-
tions). For this, a path formation operation is intro-
duced on actionM1.M3 ... .M). For example. (4
n.IN m).P is interpreted asN n.IN m.P (P does not
start to execute until the preceding capabilities are
performed).

If

3.2 Ambient ASM

In (Borger et al., 2012) the ambient concept (notion of
"nestable” environments where computation can hap-
pen) is introduced into the ASM method. In that arti-
cle an ASM machine called BBILEAGENTSMAN-
AGER is described as well, which gives a natural for-
mulation for the reduction of three basic capabilities
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(ENTRY, EXIT and CPEN) of ambient calculus in
terms of theambient ASMules. For this machine an
ambient tree hierarchy is always specified initially in
a dynamic derived function callexbirAmbProc The
machine MOBILEAGENTSMANAGER transforms the
current value oturAmbProcaccording to the capa-
bility actions given incurAmbProc Since one of
the main goals of (Borger et al., 2012) is to reveal
the inherent opportunities of the new ambient concept
introduced into ASMs, the presented definitions for
moving ambients are unfortunately incomplete.

In (Bbsa, 2012b) we extended this ASM machine
given in (Borger et al., 2012), such that it fully cap-
tures the calculus of mobile agents and it can interpret
the agents’ algorithms (given in terms of ASM syn-
tax incurAmbProcas well) in the corresponding con-
texts. By this one is able to describe formal models
of distributed systems including mobile components
in the mentioned two abstraction layers.

Since the definition of ambient ASM is based
upon the semantics of ASM without any changes,
each specification given this way can be translated
into a traditional ASM specification.

4 DEFINITIONS

As Cardelliand Gordon showed in (Cardelli and Gor-
don, 2000) the ambient calculus with the three ba-
sic capabilities (ETRY, EXIT and QPEN) is power-

ful enough to be Turing-complete. But for facilitating
the specification of such a compound formal model
as a model of a cloud infrastructure, we defined some
newnon-basic capabilityctions encoded in terms of
the three basic capabilities. Table 2 summarizes the
definitions of these non-basic capabilities.

4.1 Applied Notations

In the rest of this paper, the terlhv—"* Q denotes

multiple reduction. In additior? asm* Qdenotes one
or more steps of some ASM agents.

In the reductions presented in the latter sections,
the names of some ASM agents are followed by sub-
scripts which contain some enumerated expressions
between parenthesis. Such a subscript refers to (a
relevant part of) the current state of an agent, e.g.:
AG ENT(ctr_state:RunningStaLex::a) :

We also apply the following abbreviations:

M1. ... My =Mj. ... .M;.0 where 0 = inactivity
n[] = n[0] where 0 = inactivity
(v,
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Table 2: A Summary of the Definitions of some Non-Basic Caljtads.

| Names || New Reduction Relations (Based on the Definitions)| Definitions of the New Capabilities |

1) Renaming nnBEMP|Q] —*m P|Q] nBEMP = (vs) (s OuT n| m OPENN.OUT S.P]] | INS.INM)
2) Seeing n[]|SEEnP —*n[] | P SEENP=(vr,s)(r[INn.OuT nr BEsP] | OPENS)
3) Wrapping nfmMWRAPNP] —* m[n[ P]] mWRAP NP =

(vsr)(sOutnSEEnsBEmMr[INN]] | INSOPENT.P)
4) Allowing Code ALLow keyP | keff Q] —* P | Q ALLow keyP = OPEN keyP
5) Drawing in m[ Q| ALLow key] | n[ n DRAWINkey m.P ] N DRAWINKey MP =
(an Ambient) —*"n[Q|P] keyf OuT n.INm.INN] | ALLow m.P
6) Drawing in m[ Q| ALLow key] | N DRAWINyey M THENRELEASE lockP =
Then Release N[ DRAWINKey M THENRELEASE lock.P | key OUT n.IN mIN n] | SEE mlock WRAP n.ALLOW m.P
a Lock ——*loc N[ Q| P]]
7) Concurrent SERVERR,, MP =
Server m[ Q| ALLow key] | SERVER:ey mP (v nexd(nex{] |
Process ——" SERVERp,, MP[n,"[ Q| P] 1(v n)(OPEN nextn[

N DRAWINKey M THENRELEASE nextP]))
4.2 Non-Basic Capabilities enters into one of the available target ambients which

should accept its content in order to be led into the
Below we give an informal description of each non- initiator ambient.
basic capability in Table 2. It is beyond the scope of 6. Draw in Then Release a Lock. This capability
the paper to present detailed explanations and reduc-s very similar to the previous one, but afterhas
tions of their ambient calculus-based definitions, but been captured by (and beforem is dissolved)n is
we refer to our former works (Bosa, 2013) and (Bbsa, wrapped by another ambient. The new outer ambient
2012a) for more details. is usually employed as release for a Idck
1. Renaming.This capability is applied to rename an 7. Concurrent Server Process.This ambient con-
ambient comprising this capability. Such a capability Struct can be regarded as an abstraction of a multi-
was already given in (Cardelli and Gordon, 2000), but threaded server process. It is able to capture and
our definition differs from Cardelli’'s definition. Inthe  process several ambients having the same name in
original definition, the ambient was not enclosed parallel. In the definitiom is a replicated ambient
into another, name restricted ambient (it is caled whose each replica is going to capture another ambi-
our definition), so after it has left ambient n may ent calledm. Since there is a name restriction quanti-
enter into another ambient called(if more than one  fier in the scope of the replication sign, which bounds
m exists as sibling of). the namen, a new, fresh and unique name (denoted
2. SeeingThis operation was defined in (Cardelliand by n,"') is generated for each replica nf One of
Gordon, 2000) and it is used to detect the presence ofthe consequences of this is that nobody knows from

a given ambient. outside the true name of a replica of the ambient
3. Wrapping. Its aim is to pack an ambient compris- so each replica of is inaccessible from outside for
ing this capability into another ambient. anybody (even for another replicamftoo).

4. Allowing Code. This capability is just a basic

OPEN capability action. It is applied if an ambient

allows/accepts an ambient construct (which may be a5 THE EXTENDED FORMAL

bunch of foreign codes) contained by the body of one

of its sub-ambients (which may was sent from a for- MODEL

eign location). The name of the sub-ambient can be ) o )

applied for identifying its content, since its name may In the formal model discussed in this section, we as-

be known only by some trusted parties. sume that there are some standardized public ambi-
5. Draw in (an Ambient) The aim of this capabil- ent names, which are known by all contributors. We
ity is to draw in a particular ambient (identified by distinguish the following kinds of public names: ad-
its name) into another ambient (which contains this dresses (e.g.cloud, client, ..., client,), message

capability) and then to dissolve this captured ambi- tyPes (e.g.:reg(istration), request subgcription),
er.]t in order to access to.lts content. For. ach!evmg 3In ambient calculus the capabilityr®@N n.P is usually
this, a mechanism (contained by the ambikey) is used to encode locks (Cardelli and Gordon, 2000). Such a

applied which can be regarded as an abstraction of ajock can be released with an ambient life&Q ] whose name
kind of protocol identified bykey The ambienkey corresponds with the target ambient of theed capability.
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returnValue etc.) and parts of some common pro-
tocols (e.g.:lock, msg intf, accessout, o, ..., Os,
op). All other ambient names are non-public in the
model which follows:

curAmbProc.= root[ Cloud | Client; |.. .| Client, ]

In this paper, we focus on the cloud service side
and we leave the client side abstract.

5.1 User Actions

In the model user actions are encoded as messages. %

user can send the following kinds of messages to the
cloud:

MsgFrame= msg IN cloud ALLow int f.content]
where contentcan be:
RegMsg=reg] ALLow CID.(UIDy) ]

SubsMsg= subg ALLow CID.(UIDy,SID;, pymb ]

RequestMseg: requesf IN UIDy |
oj[ ALLow op.(client.args) | |

6j[ ALLow op.(client,argsj) ] ]

AddCIMsg= addC[ IN UIDy |
ALLow CID.(client, path,UID on cliens)) ]

AddChMsg= addCH ALLow CID.(UIDy,cname ]

SubsToChMseg: subsToCh
ALLow CID.(UIDy,cnameunameclient, pym? ]

SharelnfoMsg= shard IN CHID; |
ALLow CID.{sndtrcvr,info) ]

ShareSvcMsg: shard INCHID; | ALLow CID.
(sndcrevr,info, 0;,argsRargsF) ]

In the definitions above: the ambiemisgis the
frame of a message; the term tloud denotes the
address to where the message is sent; the tetm A
Low intf allows a (server) mechanism on the tar-
get side which uses the public protodot f to cap-
ture the message; and tbententcan be various kind
of message types. The termLow CID denotes

that the messages are sent to a service of a particu-

lar cloud which identifies itself with the non-public
protocol/credentiaCID (stands forcloud identifie).

The first three kinds of messages were introduced
in the original model. In &RegistrationMsghe user
x provides her identified IDy that she is going to use
in the cloud. By &SubscriptionMs@ user subscribes
to a cloud service identified b$1D;; the information

4The ambient calledoot is a special ambient which

is required for the ASM definition of ambient calculus,
see (Borger et al., 2012) and (Bbsa, 2012b).

464

represented byymt proves that the given user has
paid for the service properly.

Again, cloud services provide their functionalities
for their environment (users or other services) via ac-
tions called service operations in our model. In a
RequestMs@ user who has subscribed to some ser-
vices before can request the cloud to perform some
service operations belonging to some of these ser-
vices. o; ando; are the unique names of these ser-
vice operations and denote service operation requests;
clientg is the identifer of a target location (usually a
lient device) to where the output of a given opera-
on should be sent by the cloud; aadys andargs;
are the arguments of the corresponding requested ser-
vice operations. Furthermore, the termWIDy rep-
resents the address of the target user area within the
Cloudand ALLow opdenotes that the request will be
processed by a service plot, which expects service op-
eration requests (and which interacts with the request
via the public protocobp).

The rest of the message types is new in the model.
With. AddCIMsga user can register a new. possible
target (client) device or location for the outcomes of
the requests initiated by her. Such a message should
contain the chosen identifielient, of the new device,
the addresgath of the device and the user identifier
UID (on cliens) USed On the given target device.

By AddChMsgusers can open new channels, by
SubsToChMsaisers can subscribe to channels and
by SharelnfoMs@gndShareSvcMsgsers can share
information as well as service operations with some
other users registered in the same channel. For the de-
tailed description of the arguments lists of these last
four messages, see Section 5.3.1, Section 5.3.2 and
Section 5.3.3.

5.2 The Cloud Service Architecture

The basic structure of the defined cloud model, which
is based on the simplifiekhfrastructure as a Service
(laaS)specification given in (Bosa, 2012b), is the fol-
lowing:

Cloud= (v fw, g, rescr,. . .resciy)cloud

inter face|
fw[ rescn[ servicq ] |...| resci[ servicq ] |
rescli1[ service ] |...| rescty[ service ] |

gl 'OPENmMSY|
BasicCloud functionsCTCI functiong
UIDy[ userIntf] |...| UIDy[ userintf] |
UIDI"NeT ownerlntf] |...| UIDQV"®T ownerlntf]
11]
where
inter face= SERVER] s msgIN fw.IN g.n BE msg

In the cloud definition above, the names of the
ambientsfw, q andrescn,...rescr, are bound by
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name restriction. The consequence of this is that the INUID (onclieny) | (0,client,a) ]]
names of these ambients are known only within the forward Tqyien; = N BE outgoingMsg
cloud service system, and therefore the contents of Qut UIDy.leavingCloudpath

their body are completely hidden and not accessible leavingCloud= OUT q.0UT fw.

at all from outside of the cloud. So each of them can  our cloud.outgoingMsgBE msg
be regarded as an abstraction of a firewall protection.

The ambient expression representedritgr face This paper extends the user areas with some new
“pulls in” into the area protected by the ambierft8  fynctionalities. clientRegServeis applied to pro-
andq any ambient construct which is encompassed by cess everyAddCIMsgsent by the corresponding user.
the message frammesg The purpose of the restricted |t creates new communication endpoint for target
ambientsfw andqis to prevent any malicious content  (client) devices. Each such an endpoint is encoded by
which may cut loose in the body ofafter a message  an ambient whose nanstient corresponds the given
frame (nsg has been broken (by®ENmMsQ to leave  jdentifier provided in a messageldCIMsg By these
the cloud together with some sensitive information. endpoints Outputs of service Operations can immedi-
For more details we refer to (Bosa, 2013). ately be directed to registered (client) devices after

The restricted ambientesrc,,. .., restGy, repre-  they are available. Of course, if no target device or
sent computational resources of the cloud. Within g non-registered one is given inRequestMsgthe
each cloud resource some service instances can bgutcome will be stored in the area of the user.
deployed. A service may have several deployed  Every service operation output, which is always
instances in a cloud (see instancessefvicg in delivered within the body of an ambient called
resrg,...,resrq above). ~returnValue consists of three parts: the name of the

Every user area is represented by an ambientperformed service operation, the identifier of a target
whose name corresponds to the corresponding uselpcation to where the output should be sent back and
identifierU1D;. Furthermore, the user areas extended the outcome of the performed service operation itself.
with service owner role are denotedByDP"*. The sortingOutputdistributes every service operation
terms denoted bpasicCloud functionare responsi- output among the communication endpoints in an am-
ble for cloud user registration and service subscrip- pient calledout put see Section 6. The mechanism
tion. Finally .the terms de_noted t@TCI functions postingyien;, Which resides in each such a commu-
encode the client-to-client interaction. _ nication endpoint, is responsible to wrap each output

It is beyond the scope of this paper to describe of service operations which reaches the correspond-
all parts of this model in details (e.g.: the structure ing endpoint again into an ambiergturnValueand

of service instanceservice, functions of a service g forward it to the specified uSEH D (on glieny) ON the
owner aremwnerintf, the service plots and the ASM  ¢qrresponding devicelient.

agents inBasicCloud functions For the specifica-
tion of these components, we refer to (Bosa, 2013). 5.3 Client-to-Client Interaction

5.2.1 User Access Layers ) ) o o _
Again, the client-to-client interaction in our model is

(IALLow reques}, accepting new plots (IALow by CHID; which contain some mechanisms whose
(IALLOw returnValug and some service plots. erations among some subscribed users, see below:
userintf = CTClfunctions=
IALLOW request| !ALLow newPlot| clientRegServefr CHID4[ channelintf] |...| CHID[ channelintf] |
IALLOW returnValue| sortingOutput] SERVERY, addCh(UID, cnamg.
PLOTspp |...[ PLOTsIp [ . CHMGR(n, UIDy, cnamg |
(;]I'entl[ postingiens | |- .| clieni[ postingiens ] SERVERYp subsToCHU ID ,cnameunameclient, pyms).
where . CHSUBSMGR(n, UID, cname uname client, pym?
sortingOutput= (o, client, a).out puf where
IN client ALLow CID | (o,client,a) ] ] channellnt f=
clientRegServes SERVERY ; addCl SERVERY, share(
(client, path UID).(n BE client | postingient ) (sndr, revr, info).(sndrrevr,info, undef, undef, undef) |
postingjien; = SERVERY,p output (o, client, ). (sndr, revr, info, o, argsP, argsF).
Our client. forward T qyien; .returnvalug SHARINGMGR(n, sndr, revr, info, o, argsP, argsF))
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Every cloud user can create and own some chan-

nels by sending the messafjgdChMsgo the cloud,
where an instance of the ASM agentiI GR, which

abstract database a new entry with all the details of
the new channel which are the channel identifier, the
channel name and the identifier of the owner.

is equipped with a server mechanism, processes such Then it calls the abstract derived functioreate
a request and creates a new ambient with uniqgueChanne] which creates an ambient call€t 1D with

names for the requested channel, see Section 5.3.1.
If a user would like to subscribe to a channel
she should send the messagebsToChMsdo the
cloud. The server construct belongs to the ASM
agent GiSUBSMGR is responsible for processing

the terms denoted bghannelint fin its body which
encode the functions of the new channel. By the ab-
stract tree manipulation operation calle@\WAMBI -
ENTCONSTRUCT introduced in (Bbsa, 2012b), this
generated ambient construct is placed into the ambi-

these messages, see Section 5.3.2. In the subscripent tree hierarchy as sibling of the agent.

tion process the owner of the channel can decide

about the rights which can be assigned to a subscribed®

user. According to the presented high-level model,

the employed access rights are encoded by the fol-

lowing static nullary functionslisteningis a default
basic right, because everybody who joins to a chan-
nel can receive shared contergsndingauthorizes a

user to send something to only one user at a time; and

broadcastingoermits a user to distribute contents to
all member of the channel at once.
Both SharelnfoMsgand ShareSvcMsare pro-

HMGR(n,UID, cnam¢ =
ctr_state: {InitialState EndStat¢
initially ctr_state:= InitialState

if ctr_state= InitialStatethen
ctr_state:= EndState
if UID € userldsthen
if ownerO fClicnam¢ = undef then
let CHID = new(channelld$in
STORECHANNEL(CHID, cnameUID)
let CHConstruct= createChannglCHID ) in
NEWAMBIENT CONSTRUCT(CHConstrucy
where

cessed by the same server which belongs to the ASM . ~0<truct= CHID[ OUT n | channellntf]

agent $SIARINGMGR and which is located in the body
of each ambien€CHID;, see Section 5.3.3. In the
case ofSharelnfoMsghe server first supplements
the arguments list of the message with three additional
undef values, such that it will have the same num-
ber of arguments aShareSvcMsfas. Then an in-
stance of the ASM agentH3\RINGM GR can process
theShareln foMsgimilarly to ShareSvcMs(he first
three arguments are the same for both messages).

5.3.1 Establishing a New Channel

CHMGR is a parameterized ASM agent, which ex-
pectsUID of the cloud user who is going to create
a new channel andnamewhich is the name of this
channel as arguments. The additional argunmeist
the unique name of an ambient which was provided
by the surrounding server construct and in which the
currentAddChMsgs processed by an instance of this
agent (such an argument is also applied in the case o
the other ASM agents below).

First the agent checks whether the givdiD has

already been registered on the cloud and whether the,

given namecnamehas not been used as a name of an
existing channel yet (the unary functiomwnerOfCh
returns the valuendef if there is no assigned owner

to this name). If it is the case, the agent generates

a new and unique identifier denoted ®# 1D for the
new channel with the usage of the functimewwhich
provides a unique and completely fresh element for
the given set each time when it is applied. The ab-
stract ASM macro BORECHANNEL inserts into an
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Although a channel is always created as a sibling
of the currentinstance of @M GR, but as a first step it
leaves the ambiemt which was provided by the sur-
rounding server construct and in which the message
was processed (see the underlined moving action in
CHConstructabove). After that it is prepared to serve
as a channel for client-to-client interaction (it is sup-
posed that the nanmemameof every channel is some-
how announced among the potential users).

5.3.2 Subscribing to a Channel

CHSUBSMGR is a parameterized ASM agent, which
expects the following as argumentsiD of the user
who is going to subscribe to the channehame
which is the name of the channahameis the name
that the user is going to use within the chancbént
which is the identifier of a registered client device to
where the shared content will be forwarded goyant
which is some payment details if it is required. A user
can register to a channel with different names and var-
ious client devices in order to connect these devices
via the cloud.

First the agent checks whether the giléD and
cnamehave already been registered on the cloud and
whether the givemnamehas not been used as a name
of a member of the channel yet. If it is the case,

5This is the only way how an ASM agent can make
changes in the ambient tree hierarchy contained by dynamic
derived functiorcurAmbProgBo6sa, 2012b).
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the agent informs the owner of the channel about
the new subscription by applying the abstract ASM
MacroCONFIRMRIGHTS, who responses with a set of
access rights to the channel that she composed base
on the information given in the subscription.

CHSUBSMGR(n,UID,cnameunameclient,pymf =
ctr_state: {InitialState EndStaté
initially ctr_state:= InitialState

if ctr_state= Initial Statethen
ctr_state:= EndState
if UID € userldsthen
if ownerO fCljcnam¢ # undef then
if uname¢ member&namé then
let owner= ownerO fClicnamé in
let rights =
CONFIRMRIGHTS(ownerunamecnamepym) in
if rights # 0 then
STOREMEMBER(UID ,unameclient,cnamerights)
if rights + {listening} THEN
let CHID =idO fCh(cname)in
NEWAMBIENT CONSTRUCT( returnValug
OuT n.INUID.(cnameclient,IN CHID) ])

If the subscription has been accepted by the owner
and besidelsteningsome other rights are granted to
the new user, an ambient construct is created and sen
as a messageturnValueto the user by EWAMBI -
ENTCONSTRUCT. This message contains the capabil-
ity IN CHID by which the new user can send mes-
sages calledSharelnfoMsgand ShareSvcMsgnto
the ambienCHID which represents the correspond-
ing channel (the owner of a channel also has to sub-
scribe in order to receive this information and to be
able to distribute content via the channel).

5.3.3 Sharing Information via a Channel

Every server construct in which the agentiAR-
INGMGR is embedded is always located in an ambi-
ent which represents a particular channel and whose
name corresponds to the identifier of the channel. In
order to be able to perform its task, it is required that
each instance of i |ARINGM GR knows by some static
nullary function callednyChldthe name of the am-
bient in which it is executed.

SHARINGMGR is a parameterized ASM agent,
which expects the following argumentsndr is the
registered name of the sendeayr is either the reg-
istered name of a receiver or an asterisk ‘fifo is
either the content oSharelnfoMsgor the descrip-
tion of a shared service operation 8hareSvcMsg

The last three arguments are not used in the case of

the messag&harelnfoMsgand the valueundef is
assigned to each of them by the surrounding server
construct. In the messa@hareSvcMsg denotes the
unique identifier of the service operation tlsaidris

going to shareargsPdenotes the arguments othat
rcvr can freely modify if she calls the operation and
argsF denotes those part of the argument listopf
@hose value is fixed bgndr.

The agent first generates a new and unique op-
eration identifier for the service operatianin the
control statelnitialState This new identifier which
is stored in the nullary location functioshOpwill
be announced to the channel member(s) specified in
rcvr. In the control stateéSharingStatethe agent
checks whether thendr is a registered member of
the channel by calling the functianember&nams.
Then if the given value ofcvr is equal to “*” the
agent broadcasts the content of the current message to
all members of the channel, see code branch bordered
by the first rectangular frame below. Otherwise if the
value ofrcvr corresponds to the name of a particular
member of the channel, the agent sends the content of
the current message only to her, see the code branch
bordered by the second rectangular frame below.

SHARINGMGR(N, sndr, revr, info, o, argsP, argsF) =
ctr_state: {InitialState SharingStateEndStaté
initially ctr_state:= Initial State

tif ctr_state= InitialStatethen
ctr_state:= SharingState
if 0 # undef then lIsvc. sharing
let newOpld= new(sharedOpldsin
shOp= newOpld
elseshOp= undef

if ctr_state= SharingStatehen
ctr_state:= EndState
let cname= getChannelNan{enyChig in
if sndre member&namé then
let rights = getRightécname sndr) in
if rcvr =™ then /Ibroadcasting a msg.
if boradcastinge rightsthen
forall M € member&cname do
let UID = getldM), client = getAddresd{) in
if shOp=undef then
NEWAMBIENT CONSTRUCT( sharedMontent )
else
NEWAMBIENT CONSTRUCT(sharedMontens )
let UIDgngr = getldendi) in
NEWAMBIENT CONSTRUCT sharedPlot)

/Imsg. sharing

else //sending a msg.
if sendinge rightsand rcvr € memberg&name
then
let UID= getld{cvr), client= getAddressgvr) in
if shOp= undef then
NEWAMBIENT CONSTRUCT(sharedMontent )
else
NEWAMBIENT CONSTRUCT(sharedMontens )
let UIDgngr = getldendi) in
NEWAMBIENT CONSTRUCT sharedPlot)

where
sharedMontent = returnValug
OuT n.OuT myChldIn UID.{cnameclient,content) ]
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conteni = {“sender:”sndr, “content:” info}
conteny = {“sender:”sndr, “operation:”shOp
“arguments:“argsP, “description:”info}
sharedPlot=
newPlof OUT n.OUT myChldIN UID | PLOTshop]
PLOTshop= SERVERg, ShOptriggero
triggero = (vtmp)
(client, argsP).(OuT UID.IN UIDgpgr.s BE request|
o[ ALLow op.{tmp (argsP\ argsF) + argsF) ] |
tmpg ALLow output| CID[ (o, ¢, @).0OuT UlDgpgr.
INUID.tmpBE returnValue(shOpclient,a) 1])

Apart from the number of users to whom the in-
formation is sent the both code branches mentioned
above define the same actions. Accordingly at the
end of the processing d8harelnfoMsgthe agent
sends to the member(s) specifiedénr the message
sharedMontens, Which contains the sendendr and
the shared informatioim f o.

At the end of the processing dhareSvcMsg
two ambient constructs are created bygWAMBI-
ENTCONSTRUCT. The first one is the message
sharedMonteny and it is sent to the member(s) speci-
fied-inrcvr. It contains the sendandr, the new op-
eration identifiershOp the list of public arguments
argsPand the informal description of the shared op-
eration denoted bin fo.

The second ambient constructis the plooPshop
enclosed by the ambienewPlotand equipped with
some additional ambient actions (see the underlined
capabilities in the definition ofharedPlo} which
move the entire construct into the user area of the
channel member(s) specified iievr, where the plot
will be accepted by the term 1A ow newPlot

The execution of the shared service operation
shOpcan be requested in a usiR¢questMsgs nor-
mal service operations. The 8Tshopis a plot, which
can accept service operation requestshgd pseveral
times. It is special plot, because instead of triggering
the execution o6hOpas in the case of a normal oper-
ation a normal plot does, see (Bbsa, 2013), it converts
the original request to another request for operation
o by applying the terntrigger,. This means that it
substitutes the operation identifiefor shOp it com-
pletes its arguments list withrgsF and it forwards
the request foo to the user area of the usamdrwho
actually has access to trigger the execution of the op-
erationo, see Section 6.

To the new request the name restricted ambient
tmpis attached, whose purpose is similar to the com-
munication endpoints of registered clients. Namely, it
is placed into the user areagsiidrtemporary and it is
responsible to forward the outcome of this particular
request from the user areagridrto the user area of
the user who initiated the request, see Section 6.
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6 PROCESSING OF SHARED
SERVICES

In the following we present a draft of a reduction how

a particular request for a shared operation is processed
in our model. We assume that the usHD g4 has
already shared the service operat@f?"®with an-
other user calledIDx. shOpis used as the shared
identifer ofo?had According to our example the user
UIDx sends an operation request &htOpand ex-
pects to receive the outcome at the client deciog .

6.1 Triggering of Shared Operations

After a messag®kequestMsdas arrived at the re-
stricted cloud area protected by ambiéntandg and

the message franmasghas been dissolved, the ambi-
entrequestenters into the user area which is identified
byUIDy (see the numbered ambient actions in the de-
picted reduction outlines below):

Cloud | RequestMsg
(v fw, g, rescr,...rescim)cloud
(2nd) (3rd) (4th)

— e ——
SERVER], msgIN fw.IN g.n BE msg|

fw[ rescn[ serviceq ] |...| resck[ servicq ] |
rescr 1] service ] |...| resciy[ service ] |
(5th)

—_—~—

gl ! OPENmMSY|
BasicCloud function$CT C functiong
UIDy[ userlintf | PLOTshop] |
Ulendr[ Userlntf| PLOT(Oishared___) ] ‘
UIDI"NeT ownerintf]

111 |

(1st) (2nd) (6th)

msg IN cloud ALLow intf.requesf IN UIDy |
shOf ALLow op.(cInt;,argsP) ]]1]

After the ambientequesthas arrived at the ambi-
entUIDy, it is dissolved and BoTshop Captures and

converts the request to another requesbféi'ee

—* (v fw, g, rescn,. . .resci)cloud

(7th)

—
UIDy[ !ALLOW request]
IALLow newPlot| clientRegServef
IALLow returnValue| sortingOutput]
cinty[ postingng, 1|

(8th) (9th)

SERVERS shOptriggergsared |
requesf
(8th)

—_—
shOf ALLow op.(cInt,argsP ]]
11
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In the 8th step the bound nam&andtmp, which lo- output should be sent back and the outcome of the
cated under a replication sign in the server construct, performed service operation itself.

get new unique names, respectively (denotes'd$ After the request has been processed by an in-
andtmp™?in the rest). In the 9th step, the path for- stance of the corresponding service located on one
mation on €lient, argsP.OUTUID.INUIDgngrisap-  of the cloud resources and the output gfi"aed

plied intrigger snareq, Which captures the given argu- has arrived atJIDspgr, the mechanism denoted as
ments of the original request and forwards the ambi- sortingOut put forwards the output in an ambient
ents'"9 with the request foo?"@din its body to the called output to the given communication endpoint
user area of) IDgngr. of the specified target location, which tim@™d in
The captured arguments will be changed in the the current case, see the 14th, 15th and 16th steps:
new request. Namely, the original target location __,« , fw, q, rescn,...rescr,)cloud
cinty, to where the output of the request should be
sent, is replaced wittm 9. Furthermore, thargsP :
which is given as set of identifiers to which some val- U|'D5“df[ IALLOW reques
ues are assigned is complemented withsF which 'ALLOW(P;‘)NPW C“emRi%tf)erVdr
is specified in the same way. In the tefargsP\
argsF) + argsF below, the employment of the set
difference ofargsP andargsF ensures that the user - A
UIDx cannot overwrite any fixed argumentaf'aed IN clientALLow CID | (o, client,a)]] |
(even if she somehow knows the syntavofaed). cIntj[ postinginy; ] | PLOT gghares ) |
After the ambiens""d has arrived at the ambient aon

IALLow returnValue| ! (o, client, a).out puf
(15th) (17th)

L p—N—
UIDsgpgr it is renamed taequestin the 10th step and tmp"™[ ALLow output| CID[
then it is processed as a normal requestddred (18h) (1ah)
This means that the abstract p|0.t(ﬁ—(oisharedm) into (0,6,8).0UT UlDgngr- INUID,.
which the current service operation request fits, tmp™ BE returnValue(shOpclnt, a) ] ] |
triggers the execution obs"ad for more details returnvalug (o?">"®¢ tmp"™9, outcomé |
see (BbOsa, 2013). The only difference compared to 1]

the processing of a normal request is that the ambient

_ : . niq
tmp™Md s left behind inUIDsngs: The ambient terms ibmp'™9 capture the output

triple and set back the target location of the out-

—" (v fw, g, resch,. . .rescim)cloud] put to cInt; and the performed operation 8hOp
: thentmp'™d is moved with this new output triple
(11th) in its body to the user area &fIDy, see the 18th

UIDgnard !ALLOW request| and 19th steps.
sndrl - H nig i -
|ALLOW newPIot| clientRegServel After th_e a_mb|entm|dJ has arrived at the ambi
IALLOW returnValue| sortingOutput entUIDy, it will be renamed taeturnValue see the
(12th) 20th step. Then the body of the ambieetturnValue
will be processed similarly in the 21st, 22nd and 23rd

——
cInt;[ postinginy ] | PLOT gsharea y | Aty : i
' steps as before, but this time the output triple will be

(20th) (12th) - L. .
Nar T B shared T redirected to the communication endpointtft; by
"9 $™9 BE request| o?"***{ ALLow op. thesortingOut putmechanism, see below:
(tmp™a, (argsP\ argsF) +argsF) ] |

tmp™9 ALLow output| CID[ —* (v fw, g, rescn,. . .resci)cloud
(o, ¢, @).0OUT UIDgpgr.IN UIDy. .

tmp™d BE returnValue(shOpclnt;,a) 1] :
11 | 1.8) UIDy[ !A LLOW request

IALLow newPlot| clientRegServef
6.2 Redirecting the Outcome (21s) (22nd)

IALLow returnValue| I (o, client,a).out puf
The output for a service operation request is always (23d) (24th)
a triple which is always delivered within the body of m_m| (o,client,a) 1] |
an ambient calledeturnValueand which consists of (24th) o

three parts: the name of the performed service opera-

Int ti
tion, the identifier of a target location to where the clnt[ postingm 1 |

SERVERg, shOptrigger snares
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(20th) Bosa, K. (2012a). A Formal Model of a Cloud Service Ar-
o - chitecture in Terms of Ambient ASM. Technical re-
tmp"™9[ tmg"™9 BE returnvalue port, Christian Doppler Laboratory for Client-Centric
(shOpclnty, outcome | Cloud Computing (CDCC), Johannes Kepler Univer-
1] sity Linz, Austria.
) . . Bosa, K. (2012b). Formal Modeling of Mobile Computing
Then in the 24th step the functionality denoted by Systems Based on Ambient Abstract State Machines.
postingny, send the output triple to the client device Semantics in Data and Knowledge Bas&§93 of
clnty, where only the user who initiated the request LNCS:18-49.
can access to it (via the user identifi$tD o ciny;))- Bosa, K. (2013). An Ambient ASM Model for Cloud Ar-
chitecturesFormal Aspects of Computin§ubmitted.
Boudol, G., Castellani, I., Hennessy, M., and Kiehn,
A. (1994). A Theory of Processes with Local-
7 CONCLUSIONS ities. Formal Aspects of Computings:165—-200.

10.1007/BF01221098.
In this paper we extended our formerly given cloud Cardelli, L. (1999). Mobility and Security. In Bauer, F. L.

model with the high-level formal definitions of some and Steinbriiggen, R., editofSoundations of Secure
client-to-client interaction functions, by which not Computation Proc. NATO Advanced Study Institute
only information, but cloud service functions can be pages 3-37. 10S Press. Lecture Notes for Markto-

. berdorf Summer School 1999 (A summary of several
also shared among the cloud users. Our approach is Ambient Calculus papers).

gengial colgiio Magage Sltua.tlon Iy Wh.'Ch i userCardelli, L. and Gordon, A. D. (2000). Mobile Ambients.
who has access to a shared service operation to share ™ 11,50, Comput. S¢i240(1):177-213.

it again with some other usthe.via a channel (who in Kozen, D. (1997). Kleene Algebra with Testansactions

turn may share it again, etc.). on Programming Languages and Systeh®{3):427—
Furthermore, if we apply the scenario proposed 443,

in Section 2 and depicted on Figure 1b, according ma, H., Schewe, K.-D., Thalheim, B., and Wang, Q. (2008).

to which we shift (among others) the client-to-client Abstract State Services. I®bject-Oriented and

functionality to client side and wrap into a middle- Entity-Relationship Modelling/International Confer-

ware, then no traces of the user activities belonging to ence on Conceptual Modeling / the Entity Relation-
the shared services will be left on the cloud, since all ship:Approachpages 406-415.
the service operations which are shared via a chan-Ma H., Schewe, K.-D., Thalheim, B., and Wang, Q. (2009).

P ‘e . A Theory of Data-Intensive Software ServiceSer-
nel are used on behalf of its initial distributor. This vice Oriented Computing and Applicatioré{4):263—

consideration can lead one step into the direction of 283.

anonym usage of cloud services. The consequence Oﬁwa, H., Schewe, K.-D., Thalheim, B., and Wang, Q. (2012).
this that if a cloud user who has contracts with some A Formal Model for the Interoperability of Service
service providers completely or partially shares some Clouds. Service-Oriented Computing and Applica-

services via a channel, then she should be aware of tions To appear.
the fact that all generated costs caused by the usageMilner, R., Parrow, J., and Walker, D. (1992). A Calculus

of these shared services will be allocated to her. of Mobile Processes, Parts I. and Ihformation and
Computation100(1):1-77.
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