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Abstract: This paper investigates the performance and the scalability of dynamic and partially connected 2-
dimensional topologies for Particle Swarms, using von Neumann and Moore neighborhoods. The particles 
are positioned on 2-dimensional grids of nodes, where they move randomly. The von Neumann or Moore 
neighborhood is used to decide which particles influence each individual. Structures with growing size are 
tested on a classical benchmark and compared to the lbest, gbest and the standard von Neumann and Moore 
configurations. The results show that the partially connected grids with von Neumann neighborhood 
structure perform more consistently than the other strategies, while the Moore partially connected structure 
performs similarly to the standard Moore configuration. Furthermore, the proposed structure scales similarly 
or better than the standard configuration when the problem size grows. 

1 INTRODUCTION 

The Particle Swarm Optimization (PSO) algorithm 
(Kennedy and Eberhart, 1995) is a population-based 
metaheuristics that was inspired by the social 
behavior of bird flocks and fish schools. Since its 
inception, PSO has been applied with success to a 
number of problems and motivated several lines of 
research that investigate its main working 
mechanisms. One of these research lines deals with 
the population topology, which is the structure that 
defines the connections between the particles and the 
flow of information through the population. 
Therefore, the chosen structure deeply affects the 
convergence skills of the algorithm. 

In PSO, the particles are interconnected so that 

they acquire information on the regions explored by 
other particles. In fact, it has been claimed that the 
uniqueness of the algorithm lies in the dynamic 
interactions of the particles (Kennedy and Mendes, 
2002). These networks of individuals may be of any 
possible structure, from sparse to dense (or even 
fully connected) graphs, with different degrees of 
connectivity and clustering in between. The most 
commonly used PSO population structures are the 
lbest (which connects the individuals to a local 
neighborhood) and the gbest (in which each particle 
is connected to every other individual). These 
topologies are well-studied and the major 
conclusions are that gbest is fast but is frequently 
trapped in local optima, while lbest is slower but 
converges more often to the neighborhood of the 
global optima. Since the first experiments on these 
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topologies, researchers have tried to design 
structures that hold both lbest and gbest qualities. 
Some studies also try to understand what makes a 
good structure. In (Kennedy and Mendes, 2002), for 
instance, Kennedy and Mendes investigate several 
types of topologies and recommend the use of a 
lattice with von Neumann neighborhood (which 
results in a connectivity degree between that of lbest 
and gbest).  

This paper extends the concept of von Neumann 
configuration and investigates the behavior of a 
partially connected topology with von Neumann 
neighborhood, where not all the neighbors’ cells of a 
given one are occupied. A similar structure with 
Moore neighborhood is also tested and compared to 
the standard Moore configuration. The particles are 
distributed on a grid of nodes. The size of the grid is 
set so that the number of nodes is larger than the 
number of particles. The particles are placed 
randomly on the grid and a simple set of rules guides 
their movements through the nodes during the run. 
The population structure is defined by the von 
Neumann or Moore neighborhood between the 
nodes, which means that the degree of connectivity 
of each particle varies between 1 and 5 during the 
run, for the von Neumann version, and between 1 
and 9, for the Moore. Preliminary tests are 
conducted with local neighborhood random 
structures, that is, the particles move randomly 
through the grid, choosing between free adjacent 
nodes. 

The structures are tested on a classical 
benchmark test set and compared to the lbest, gbest 
and standard von Neumann and Moore 
configurations. The results show that the partially 
connected von Neumann structure with random 
movement is able to improve the standard 
configuration. Furthermore, the proposed structure 
performs more consistently than the other 
topologies. It is believed that these results, together 
with the simplicity of the approach and its potential 
as a basis for more complex movement rules (based 
on fitness or Euclidean distance between the 
particles, for instance) validate this study. 

The present work is organized as follows. The 
next section briefly describes the PSO and its 
topologies, while giving a general overview on 
previous studies of population structures for PSO. 
Section 3 describes the random partially connected 
structures used in this investigation. Section 4 
describes the experiments and discuses the results. 
Finally, Section 5 concludes the paper and outlines 
future lines of research. 

2 PARTICLE SWARMS AND 
POPULATION STRUCTURE 

PSO is a population-based algorithm in which a 
group of solutions travels through the search space 
according to a set of rules that favor their movement 
towards optimal regions of the space. The algorithm 
is described by a simple set of equations that define 
the velocity and position of each particle. The 
position vector of the i-th particle is given by 
Ԧܺ ൌ ሺݔ,ଵ, ,,ଶݔ …  is the dimension of ܦ ଵ,), whereݔ

the search space. The velocity is given by ሬܸԦ ൌ
ሺݒ,ଵ, ,,ଶݒ …  ଵ,). The particles are evaluated with aݒ

fitness function ݂ሺ Ԧܺሻ in each time step and then 
their positions and velocities are updated by: 

ሻݐ,ௗሺݒ ൌ ݐ,ௗሺݒ െ 1ሻ  ܿଵݎଵ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯
 ܿଶݎଶ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯ (1)

ሻݐ,ௗሺݔ ൌ ݐ,ௗሺݔ െ 1ሻ  ሻ (2)ݐ,ௗሺݒ

were  is the best solution found so far by particle ݅ 
and  is the best solution found so far by the 
neighborhood. Parameters ݎଵand ݎଶ are random 
numbers uniformly distributed in the range ሾ0,1] and 
ܿଵand ܿଶ are acceleration coefficients that tune the 
relative influence of each term of the formula. The 
first term, influenced by the particle’s best solution 
found so far, is known as the cognitive part, since it 
relies on the particle’s own experience. The last term 
is the social part, since it describes the influence of 
the community in the velocity of the particle.  

In order to prevent particles from stepping out of 
the limits of the search space, the positions ݔ,ௗሺݐሻ of 
the particles are limited by constants that, in general, 
correspond to the domain of the problem: ݔ,ௗሺݐሻ ∊
ሾെܺ݉ܽݔ,  ሿ. Velocity may also be limitedݔܽ݉ܺ
within a range in order to prevent the explosion of 
the velocity vector: ݒ,ௗሺݐሻ ∊ ሾെܸ݉ܽݔ,  .ሿݔܸܽ݉
Usually, ܺ݉ܽݔ ൌ  .ݔܸܽ݉

Although the classical PSO may be very efficient 
on numerical optimization, it requires a proper 
balance between local and global search, as it often 
gets trapped in local optima. In order achieve a 
better balancing mechanism, Shi and Eberhart 
(1998) added the inertia weight	߱, that allows a fine-
tuning of the local and global search abilities of the 
algorithm. The modified velocity equation is:  

ሻݐ,ௗሺݒ ൌ ࣓. ݐ,ௗሺݒ െ 1ሻ  ܿଵݎଵ൫,ௗ െ ݐ,ௗሺݔ െ
1ሻ൯  ܿଶݎଶ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯  

(3)

By adjusting ߱ (usually within the range [0, 1.0]) 
together with the constants ܿଵ and ܿଶ, it is possible to 

IJCCI�2013�-�International�Joint�Conference�on�Computational�Intelligence

48



balance exploration and exploitation abilities of the 
PSO.  

The neighborhood of the particle (which defines 
in each time-step the value of ) is a key factor in 
the performance of PSO. Most of the PSOs use one 
of two simple sociometric principles for defining the 
neighborhood network. One connects all the 
members of the swarm to one another, and it is 
called gbest, were g stands for global. The degree of 
connectivity of gbest is ݇ ൌ ݊, where n is the 
number of particles. The other typical configuration, 
called lbest (where l stands for local), creates a 
neighborhood that comprises the particle itself and 
its ݇ nearest neighbors. The most common lbest 
topology is the ring structure, in which the particles 
are arranged in a ring structure (resulting in a degree 
of connectivity ݇ ൌ 3, including the particle). 

As stated above, the topology of the population 
affects the performance of the PSO and one must 
chose the configuration according to the target-
problem. Furthermore, each topology has its own 
typical behavior and its choice may also depend on 
the objectives or tolerance of the optimization 
process. Since all the particles are connected to 
every other and information spreads easily through 
the network, the gbest topology is known to 
converge fast but unreliably (it often converges to 
local optima). The lbest converges slower than the 
gbest structure because information spreads slower 
through the network. However, and for the same 
reason, it is also less prone to converge prematurely 
to local optima.  

In summary, the choice of the structure affects 
the performance and in-between the ring structure 
with ݇	 ൌ 	3 and the gbest with ݇	 ൌ ݊ there are 
several types of structure, each one with its 
advantages on a certain type of scenarios. 
Sometimes it is not possible to choose the best 
configuration: the structure of the problem may be 
unknown, or the time requirements do not permit 
preliminary tests. Therefore, the research community 
has dedicated substantial efforts on studying the 
properties of PSO’s population structures.  

In 2002, Kennedy and Mendes (Kennedy and 
Mendes, 2002) published an exhaustive study on 
population structures for PSO. They tested several 
types of structures, including the lbest, gbest and 
Von Neumann configuration. They also tested 
populations arranged in graphs that were randomly 
generated and optimized to meet some criteria. They 
concluded that when the configurations were ranked 
by the performance at 1000 iterations the structures 
with k = 5 perform better, but when ranked 
according to the number of iterations needed to meet 

the criteria, configurations with higher degree of 
connectivity perform better. These results are 
consistent with the premise that low connectivity 
favors robustness, while higher connectivity favors 
convergence speed (at the expense of reliability). 
Amongst the large set of graphs tested in (Kennedy 
and Mendes, 2002), the Von Neumann configuration 
performed more consistently, and in the conclusions 
the authors recommend its use.  

In Parsopoulos and Vrahatis proposed a unified 
PSO (UPSO) which combines both the gbest and 
lbest configurations. Equation 1 is modified in order 
to include a term with  and a term with . A 
parameter balances the weight of each term. The 
authors argue that the proposed scheme exploits the 
good properties of gbest and lbest. The same 
algorithm was later applied to dynamic optimization 
problems (Parsopoulos and Vrahatis, 2005). 

Peram et al., (2003) proposed the fitness–
distance-ratio-based PSO (FDR-PSO). The 
algorithm defines the “neighborhood” of a particle 
as its ݇ closest particles in the population (measured 
in Euclidean distance). A selective scheme is also 
included: the particle selects near particles that have 
also visited a position of higher fitness. The 
algorithm is compared to a standard PSO and the 
authors claim that FDR-PSO performs better on 
several test functions. However, the FDR-PSO is 
compared only to a gbest configuration, which is 
known to converge frequently to local optima in the 
majority of the functions of the test set. 

More recently, a comprehensive-learning PSO 
(CLPSO) (Liang et al., 2006) was proposed. Its 
learning strategy abandons the global best 
information and introduces a complex and dynamic 
scheme that uses all other particles’ past best 
information. CLPSO can significantly improve the 
performance of the original PSO on multimodal 
problems. 

More complex strategies deal with the population 
in a centralized manner. For instance, in (Hseig et 
al., 2009), the PSO varies the size of the swarm 
during the run, while running a solution-sharing 
scheme that, like in (Liang et al., 2006), uses the 
past best information from every particle.  

This work uses a 2-dimensional framework to 
force a dynamic behavior in the population structure 
and variability in the connectivity degree. The main 
objective is to search for a good compromise 
between high and low connectivity schemes, using 
dynamic connections and local interactions provided 
by the supporting framework. Since the Von 
Neumann configuration was recommended in 
(Kennedy and Mendes, 2002), we use it as a base-
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structure, but we also test a Moore-based structure.  

3 PARTIALLY CONNECTED 
STRUCTURES 

This paper proposes a framework for partially 
connected 2-dimensional PSO population structures. 
In the beginning of the run, the particles are 
randomly distributed on a 2-dimensional toroidal 
grid of nodes with size ݏ ൌ ܺ ൈ ܻ  ݊, where ݊ is 
the swarm size. In each time-step, each particle 
moves randomly to an adjacent free node. The 
candidate nodes are defined by the Moore 
neighborhood. If a particle is surrounded by other 
particles (i.e., all the nodes in the particle’s Moore 
neighborhood are occupied by other particles), it 
remains in the same site until a node in the 
neighborhood is freed.  

The configuration of the swarm on the grid in 
each time-step defines the  positions in Equation 
1. If the best position found so far by any individual 
in the von Neumann (or Moore) neighborhood of the 
particle is better than the current , then the new  
is set to that position.  

The particles are supplied with a kind of 
memory: while a new  is not transmitted to the 
particle by one of its current neighbors, the particle 
continues to update its velocity and position with the 
previous , which may correspond to a particle that 
is no longer in its neighborhood. On the other hand, 
the particle is no longer connected to the particle that 
transmitted the  value, and if that particle visits a 
better position, it will not be transmitted to the 
individual. 

With the 2-dimensional framework, the 
connectivity is limited by the neighborhood. Please 
note that the most commonly used population 
topologies may be configured by this model: lbest is 
configured by a one-dimensional lattice with size 
1 ൈ ܰ, with ܰ ൌ ݊; the standard von Neumann and 
Moore configurations are described by a grid with 
size  ܺ ൈ ܻ ൌ ݊ and von Neumann or Moore 
neighboord with Manhattan distance ݎ ൌ 1; finally, 
a gbest configuration may modeled by setting 
ܺ ൈ ܺ ൌ ݊ with Moore neighborhood with range 
	ݎ ൌ 	ܺ/2 െ 1. 

This paper studies the performance of structures 
with growing size. The particles are allowed to move 
within a Moore neighborhood with range 1. The 
interaction is defined by the von Neumann 
neighborhood with Manhattan distance 1. The 
dynamic particle swarm on partially connected grid 

is summarized in Table 1. 

Table 1: PSO on a dynamic and partially connected grid. 

PSO on a partially connected random structure 
1. For each particle 1 → ݊: 
1.1. Initialize particle ݅ 
1.2. Evaluate particle’s position ݔపሬሬሬԦ: ݂ሺݔపሬሬሬԦሻ  
1.3. Set ሺ݅ሻ ൌ ሺ݅ሻ ൌ ݂ሺݔపሬሬሬԦሻ  
2. Set grid size:  ܺ ൈ ܻ 
3. Place the particles randomly on the grid 
4. For each particle 1 → ݊ 
4.1. If the fitness of the best position found so far  by any of the 
particles ݆ in the Von Neumann or Moore neighborhood of 
particle ݅ is better than ሺ݅ሻ, then ሺ݅ሻ ൌ  
4.2. Choose randomly a free node in the Moore neighborhood and 
move the particle to that node. 
5. For each particle 
5.1. Update velocity and position using equations 2 and 3.  
5.2. Evaluate particle’s position ݔపሬሬሬԦ: ݂ሺݔపሬሬሬԦሻ  
5.2. If ݂ሺݔపሬሬሬԦሻ ൏ ݂ሺሺ݅ሻሻ, then ሺ݅ሻ ൌ  పሬሬሬԦݔ
5. If stop criterion not met, go to 4 

4 EXPERIMENTS AND RESULTS 

This section describes the experiments and 
comparisons between the different population 
structures. The connectivity degree of the proposed 
dynamic and partially connected topology is given, 
as well as a simple scalability test that aims at 
investigating the performance of the partially 
connected von Neumann topology with growing 
problem size.  

4.1 Performance Analysis: Von 
Neumann Neighborhood  

For testing the various topologies, an experimental 
setup was constructed with five benchmark 
unimodal and multimodal functions that are 
commonly used for investigating the performance of 
PSO (see (Kennedy and Mendes, 2002); 
(Parsopoulos and Vrahatis, 2004) and (Trelea, 
2003), for instance). The functions are described in 
Table 2. The optimum (minimum) of all functions is 
located in the origin with fitness 0. The dimension 
of the search space is set to ܦ ൌ 30 (except 
Schaffer, with 2 dimensions).The population size ݊ 
is set to 40. The acceleration coefficients were set to 
1.494 and the inertia weight is 0.729, as in Trelea 
 is defined as usual by the domain’s ݔܽ݉ܺ (2003)
upper limit and ܸ݉ܽݔ	 ൌ  A total of 50 runs .ݔܽ݉ܺ	
for each experiment are conducted. Asymmetrical 
initialization was used (the initialization range for 
each function is given in Table 2). 

Two sets of experiments were conducted. In the 
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first set, the algorithms were run for a limited 
amount of iterations (3000 for ଵ݂ and ହ݂, 10000 for 
ଶ݂, ଷ݂ and ସ݂) and the fitness of the best solution 

found was averaged over the 50 runs. In the second 
set of experiments the algorithms were all run for 
20000 iterations or until reaching a stop criterion. 
The criteria were taken from (Kennedy and Mendes, 
2002) and are given in Table 2. The number of 
iterations required to meet the criterion was recorded 
and averaged over the 50 runs. A success measure 
was defined as the number of runs in which an 
algorithm attains the fitness value established as the 
stop criterion. These experiments are similar to those 
described by Kennedy and Mendes (2002).  

Table 2: Benchmarks for the experiments. Dynamic range, 
initialization range and stop criteria. 

function	
mathematical	
representation	

Range	of	
search/	
Range	of	

initialization

stop	

Sphere  
f1 ଵ݂൫ Ԧܺ൯ ൌ ݔଶ



ୀ

 
ሺെ100, 100ሻଷ

(50, 100ሻଷ 
0.01 

Rosenbrock 
 f2 

ଶ݂ሺݔԦሻ ൌ ሺ100ሺݔାଵ

ିଵ

ୀଵ
െ ଶሻଶݔ

 ሺݔ
െ 1ሻଶ 

ሺെ100, 100ሻଷ

ሺ15, 30ሻଷ 
100 

Rastrigin  
f3 

ଷ݂ሺݔԦሻ

ൌሺݔଶ െ 10 cosሺ2ݔߨሻ


ୀଵ
 10ሻ 

ሺെ10, 10ሻଷ 
ሺ2.56, 5.12ሻଷ

100 

Griewank 
 f4 

ସ݂ሺݔԦሻ
ൌ 1


1

4000
ݔଶ


ୀଵ

െෑcos ൬
ݔ
√݅
൰



ୀଵ

 

ሺെ600, 600ሻଷ

ሺ300, 600ሻଷ
0.05 

Schaffer 
f5 

݂ሺݔԦሻ
ൌ 0.5


൫sinඥݔଶ  ଶ൯ݕ

ଶ
െ 0.5

൫1.0  0.001ሺݔଶ  ଶሻ൯ݕ
ଶ 

ሺെ100, 100ሻଶ

ሺ15, 30ሻଶ 
0.00001

 

PSOs with lbest, gbest and Von Neumann 
configurations were tested on the five benchmark 
problems. Then, partially connected structures with 
size 7 ൈ 7, 8 ൈ 8,	9 ൈ 9 and	10 ൈ 10 were also 
tested. The experiments return three independent 
performance metrics: best fitness, iterations to a 
solution, and success rate. It is difficult to compare 
all the versions of the algorithms in all the functions 
considering the complete set of metrics. Success rate 
and iterations to a solution, for instance, are 
particular difficult to compare, because an algorithm 

may be very fast in meeting the criteria, while 
meeting it in a few number of runs. Therefore, we 
start by comparing each configuration in each 
function.  

Table 3 and Table 4 compare the von Neumann 
standard configuration with partially connected von 
Neumann structures. Table 3gives the averaged best 
fitness found by the swarms. Table 4 gives, for each 
algorithm and each function, the averaged number of 
iterations required to meet the criterion, and the 
number of runs in which the criterion was met.  

An inspection of the tables shows that some 
partially connected Neumann structures are able to 
improve the von Neumann configuration in the 
majority of the problems.  

Table 3: Von Neumann topologies. Best fitness values 
averaged over 50 runs. 

 f1 f2 f3 f4 f5 

VN 
1.05e‐35 1.31e+01  6.99e+01  6.25e‐03  1.94e‐04

±1.06e‐35 ±2.16e+01 ±1.83e+01  ±8.23e‐03  ±1.37e‐03

VN 
(7×7)

2.69e‐39 1.00e+01  7.19e+01  7.73e‐03  9.72e‐04

±6.81e‐39 ±1.14e+01 ±1.59e+01  ±8.57e‐03  ±2.94e‐03

VN 
(8×8)

9.37e‐38 1.41e+01  6.87e+01  7.14e‐03  1.94e‐04

±2.29e‐37 ±2.52e+01 ±1.93e+01  ±1.00e‐02  ±1.37e‐03

VN 
(9×9)

9.13e‐37 9.72e+00  6.89e+01  7.68e‐03  1.94e‐04

±2.10e‐36 ±1.88e+01 ±1.71e+01  ±9.56e‐03  ±1.37e‐03

VN 
(10×10)

7.66e‐36 1.12e+01  6.66e+01  6.40e‐03  1.94e‐04

±2.10e‐36 ±2.16e+01 ±1.94e+01  ±7.69e‐03  ±1.37e‐03

Table 4: Von Neumann topologies. Iterations to a solution 
averaged over 50 runs and number of successful runs. 

 f1 f2 f3 f4 f5 

VN 
489.86 1443.24 748.98  458.36  454.56

±18.55
(50) 

±1547.11
(50) 

±86.20 
(49) 

±29.10 
(50) 

±659.27
(50) 

VN 
(7×7) 

444.50 1432.20 267.00  408.80  309.42

±23.19
(50) 

±1845.74
(50) 

±78.12 
(47) 

±25.45 
(50) 

±425.56
(45) 

VN 
(8×8) 

458.16 2135.12 278.39  421.24  299.92

±19.44
(50) 

±2417.81
(50) 

±87.21 
(46) 

±26.88 
(50) 

±461.57
(49) 

VN 
(9×9) 

474.96 1589.56 314.43  450.56  264.80

±22.60
(50) 

±2137.00
(50) 

±81.37 
(49) 

±54.45 
(50) 

±395.90
(49) 

VN 
(10×10)

492.32 2416.00 320.63  452.60  206.94

±23.47
(50) 

±2069.21
(50) 

±69.97 
(48) 

±24.96 
(50) 

±196.17
(49) 

 

The structure with size 9 ൈ 9, for instance, 
improves the standard configuration fitness in 
functions ଵ݂, ଶ݂, ଷ݂. In ସ݂ the standard structure is 
better, while in ହ݂ the result is the same. As for the 
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average iterations to a solution, the 9×9 structure is 
faster than the standard von Neumann configuration 
in every function except ଶ݂.  

The 9 ൈ 9 grid has 81 nodes, which is 
approximately twice the number of particles in the 
swarm. This ratio gave good results throughout the 
test set. The ratio can also be adjusted for optimal 
performance. However, in order to avoid introducing 
extra parameters that require tuning, it is better to 
analyze the results and establish a consistent size 
that performs well throughout a wide range of 
scenarios. For the moment, and according to the 
results attained in the five-function benchmark, we 
suggest a 1: 2	 ratio between the size of the swarm 
and the size of the grid.  

Non-parametric Mann–Whitney U statistical 
tests (with 0.05 level of significance) comparing the 
fitness values attained by each configuration in each 
function return the following results: the 9 ൈ 9 
structure is significantly better than the standard 
configuration on ଵ݂; in the remaining functions the 
two topologies are statistically equivalent. 

Applying the Mann–Whitney U tests to the 
iterations metrics, the conclusions are that the 9 ൈ 9 
structure is statistically better on ଵ݂, ଷ݂, ସ݂ and ହ݂. 
The algorithms are statistically equivalent in ଶ݂. 
Therefore, the partially connected structure 
significantly improves the performance of the 
standard von Neumann configuration in every 
function except ଶ݂ (in which the algorithms were 
found to be statistically equivalent in both fitness 
and convergence speed). 

Table 5 and Table 6compare the 9 ൈ 9	partially 
connected von Neumann structures with the lbest 
and gbest strategies. The proposed structure is able 
to improve lbest fitness values in ଵ݂, ଶ݂, ଷ݂ and ହ݂; in 
ଵ݂ and ଷ݂ the differences are statistically significant. 

The differences in ସ݂ are also significant but in this 
case lbest is better. As for the average iterations for a 
solution, the partially structured Von Neumann 
structure improves lbest in every function, with 
statistical differences between the results. 

Table 5: lbest, gbest and 9 ൈ 9 partially connected von 
Neumann topology. Best fitness values averaged over 50 
runs. 

 f1 f2 f3 f4 f5 

lbest 
2.61e‐25  1.40e+01  1.07e+02  4.93e‐04  3.89e‐04

4.33e‐25  3.53e+01  2.23e+01  1.99e‐03  1.92e‐03

gbest 
4.00e+03  4.91e+00  1.05e+02  5.42e+01 2.33e‐03

6.06e+03  1.26e+01  2.89e+01  6.82e+01 4.19e‐03

VN 
(9×9) 

9.13e‐37  9.72e+00  6.89e+01  7.68e‐03  1.94e‐04

±2.10e‐36  ±1.88e+01  ±1.71e+01  ±9.56e‐03 ±1.37e‐03

Table 6: lbest, gbest and 9 ൈ 9 partially connected Von 
Neumann topology Iterations to a solution averaged over 
50 runs and number of successful runs. 

 f1 f2 f3 f4 f5 

lbest
662.30 1800.69 2014.77  618.22  708.08

±21.81
(50) 

±1650.07
(49) 

±2331.92 
(22) 

±31.87 
(50) 

±849.52
(50) 

gbest
489.86 891.42 211.13  315.08  395.05

±18.55
(50) 

±1066.82
(50) 

±77.46 
(23) 

±56.67 
(24) 

±795.04
(40) 

VN 
(9×9)

474.96 1589.56 314.43  450.56  264.80

±22.60
(50) 

±2137.00
(50) 

±81.37 
(49) 

±54.45 
(50) 

±395.90
(49) 

Table 7: Iterations to a solution averaged over 50 runs and 
number of successful runs. 

 f1 f2 f3 f4 f5 

lbest 6.50e+02 1.80e+03 2.01e+03  5.94e+02  3.87e+02

gbest 3.53e+02 8.05e+02 2.02e+02  3.15e+02  3.95e+02

VN 4.79e+02 1.32e+03 2.78e+02  4.36e+02  2.40e+02

VN (9×9) 4.63e+02 1.40e+03 2.51e+02  4.20e+02  1.51e+02

 

The differences between the best fitness values 
attained by gbest and 9 ൈ 9 structure are statistically 
different for every function. von Neumann 9 ൈ 9  is 
better in ଵ݂, ଷ݂, ସ݂ and ହ݂, while gbest is better in ଶ݂. 
Comparing the proposed structure with gbest is not 
trivial because gbest fails very often in meeting the 
stop criteria. It is faster in three functions ( ଶ݂, ଷ݂, ସ݂) 
but in ଷ݂ and ସ݂ the topology fails to meet the criteria 
in more 50% of the runs. Therefore, we may 
conclude that von Neumann 9 ൈ 9 performs more 
consistently than gbest throughout the test set. 

In the above reported statistical tests on the 
averaged iterations to a solution, when a 
configuration meets the criterion on less runs that 
the other configuration, the ݎ best results are 
selected and compared, where ݎ is the number of 
runs in which the least successful configuration (of 
two) met the criterion. When considering the results 
of the four configuration in each function, and select 
only the ݎ best iterations results, where ݎ is the 
number of runs in which the least successful 
configuration of all four met the criterion, different 
iteration to solution values are obtained, which are 
given Table 7. Under these criteria, the 9 ൈ
9	partially connected Von Neumann structure still 
performs better than lbest and Von Neumann in the 
majority of the scenarios. The gbest is the fastest 
configuration in four functions but its fitness values 
and success rates, as already stated, are very poor 
when compared to the other algorithms. 

The boxplot in Fig. 1 summarizes the results 
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of the algorithms according to the success metrics. 
The gbest configuration is clearly the worst 
algorithm in the test set under this criterion. The 
standard Von Neumann configuration is the most 
consistent (in the total 250 runs, it only failed in one 
run), but the 9 ൈ 9 Von Neumann attains similar 
results: in 250 runs it only failed twice. 

 

Figure 1: Rank by success rates. Von Neuammn random 
partially connected structure (vNR), Von Neumann (vN), 
lbest (lB) and gbest (gB).  

A general evaluation of the four topologies 
according to fitness, speed and success results in the 
following ranking: 9 ൈ 9 von Neumann (1.7), 
standard von Neumann (2.1), lbest (3.0) and gbest 
(3.2). The proposed structure ranks first. Figure 2 
shows the boxplot of the ranking.  

As demonstrated above, the proposed partially 
connected structures are able to improve the 
standard configuration and the classical lbest and 
gbest topologies. The question that arises now is 
what makes these random structures better. The 
differences to the standard configuration are the 
candidates for explaining the differences: different 
average connectivity, dynamic connectivity and 
neighborhood, and memory (please remember that a 
particle retains a , even if the informant is no 
longer in the neighborhood, until a better pg is 
transmitted by a neighbor).  

 

Figure 2: Rank by overall performance. 

Some tests with non-memory versions of the 
dynamic structures showed that the memory version 
performs generally better. However, non-memory 
structures do not necessarily perform worst and this 
strategy may be useful under higher connectivity 
partially connected structures (with Moore 
neighborhood, for instance). This study is beyond 
the scope of this paper and the main conclusion at 
this moment is that the memory scheme is beneficial 
for the proposed Von Neumann structure.  

Table 8: Moore topologies. Best fitness values averaged 
over 50 runs. 

 f1 f2 f3 f4 f5 

Moore
2.04e‐41 1.23e+01  6.78 e+01  9.98e‐03  1.94e‐04

±2.78e‐41 ±2.28e+01 ±1.54e+01  ±1.42e‐02 ±1.37e‐03

Moore 
(7×7) 

1.80e‐42 9.51e00  7.61 e+01  9.15e‐03  1.55e‐03

±6.81e‐39 ±1.94e+00 ±2.28e+01  ±1.31e‐02 ±3.60e‐03

Moore 
(8×8) 

7.04e‐41 6.02e00  7.62 e+01  1.20e‐02  2.77e‐04

±1.46e‐40 ±1.88e+01 ±2.23e+01  ±1.50e‐02 ±2.66e‐03

Moore 
(9×9) 

9.08e‐40 1.02e+01  6.86 e+01  9.54e‐03  1.17e‐03

±1.26e‐39 ±1.94e+01 ±1.98e+01  ±1.42e‐02 ±3.19e‐03

Moore 
(10×10)

9.78e‐39 1.12e+01  6.87 e+01  6.61e‐03  5.83e‐04

±1.76e‐38 ±2.16e+01 ±1.79e+01  ±1.03e‐02 ±1.37e‐03

Table 9: Von Neumann topologies. Iterations to a solution 
averaged over 50 runs and number of successful runs. 

 f1 f2 f3 f4 f5 

Moore
419.58  1092.70  338.78  395.88  295.96
±17.56
(50) 

±1209.86
(50) 

±427.94 
(49) 

±28.19 
(49) 

±263.47
(50) 

Moore
(7×7) 

410.10  1605.58  250.71  385.45  521.52
±22.29
(50) 

±1955.77
(50) 

±78.12 
(42) 

±29.22 
(49) 

±703.56
(45) 

Moore
(8×8) 

427.98  1745.70  320.63  396.35  427.15
±17.55
(50) 

±1805.28
(50) 

±69.971 
(45) 

±26.88 
(49) 

±1026.02
(49) 

Moore
(9×9) 

440.26  2199.04  658.71  405.02  345.38
±21.13
(50) 

±2233.83
(50) 

±1270.512 
(47) 

±27.35 
(47) 

±939.29
(49) 

Moore
(10×10)

452.08  1485.10  512.38  418.46  794.18
±17.51
(50) 

±1720.67
(50) 

±194.09 
(47) 

±24.96 
(50) 

±2259.27
(49) 

4.2 Moore Neighborhood 

Table 8 and Table 9 compare the Moore standard 
configuration with partially connected Moore 
structures. Table 8 gives the averaged best fitness 
found by the swarms, while Table 9 gives, for each 
algorithm and each function, the averaged number of 
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iterations required to meet the criterion, and the 
number of runs in which the criterion was met. 

The Moore dynamic structure with size 7×7, for 
instance, is clearly better than the standard 
configuration in functions f1, f2 and f3, while being 
outperformed in function f5. However, the structure 
with size 9×9 does not improve significantly the 
performance in any function, while being 
outperformed in f1 and f5. It seems that a sparse 
connectivity degrades the performance of the Moore 
structure, especially in the convergence speed of the 
algorithm. 

Table 10: ݀ ൌ 15. Best fitness values averaged over 50 
runs. 

 f1 f2 f3 f4 

VN 
8.06e‐22  6.57e00  1.26e+01  1.46e‐02 

±1.09e‐21  ±2.28e+01  ±5.72e00  ±1.70e+02 

VN 
(9×9) 

1.68e‐22  1.73e00  1.50e+01  3.44e‐02 

±2.03e‐22  ±3.29e00  ±6.58e00  ±2.73e‐02 

Table 11: ݀ ൌ 15. Iterations to a solution averaged over 
50 runs and number of successful runs. 

 f1 f2 f3 f4 

VN 

236.62  491.82  52.84  267.74 

±11.12 

(50) 

±863.31 

(49) 

±12.41 

(50) 

±78.55 

(46) 

VN 
(9×9) 

233.38  351.82  55.52  297.56 

±9.62 

(50) 

±370.88 

(50) 

±15.60 

(50) 

±92.07 

(39) 

4.3 Scalability 

A simple scalability test of the von Neumann 
structures was conducted by setting the 
dimensionality of the functions ଵ݂, ଶ݂, ଷ݂ and ସ݂ to 
݀ ൌ 15	and ݀ ൌ 60. Like in Section 4.1, two sets of 
experiments were conducted. In the first set, the 
algorithms were run for a limited amount of 
iterations: with ݀ ൌ 15, 1000 iterations for ଵ݂ and 
6000 for ଶ݂, ଷ݂ and ସ݂; with ݀ ൌ 60, 3000 iterations 
for ଵ݂ and 20000 for ଶ݂, ଷ݂ and ସ݂. In the second set 
of experiments the algorithms were all run for 
20000 iterations or until reaching a stop criterion. 
The criteria are as in Section 4.1, except with the 
60-dimensional ଷ݂ function, for which the criteria 
was set to 300 (because none of the algorithms 
could meet the criterion set for the ݀ ൌ 30 version). 
The number of iterations required to meet the 
criterion was recorded and averaged over the 50 
runs. A success measure was defined as the number 

of runs in which an algorithm attains the fitness 
value established as the stop criterion.  

Results comparing the standard von Neumann 
configuration and the 9 ൈ 9 partially connected 
configuration are in Tables 10-13. With ଵ݂, the 
standard and the partially connected configurations 
are statistically equivalent for both ݀ ൌ 15 and 
݀ ൌ 60. With ଶ݂, the 9 ൈ 9 topology is significantly 
better than the standard von Neumann configuration 
when ݀ ൌ 15 and ݀ ൌ 60. With ଷ݂, the two 
configuration are equivalent for ݀	 ൌ 	15 and the 
9 ൈ 9 topology is significantly better for ݀	 ൌ 60. 
Finally, with ସ݂, the partially connected 9 ൈ 9 
topology is worse when ݀ ൌ 15, but it is statistically 
equivalent to the standard topology when ݀ ൌ 60.  

Non-parametric Mann–Whitney U statistical 
tests (with 0.05 level of significance) were used. A 
version of the algorithm was considered statistically 
better if at least one of the measures (average best 
solution and average number of iterations to a 
solution) was found to be statistically better, while 
the other is at least equivalent. 

Table 12: ݀ ൌ 60. Best fitness averaged over 50 runs. 

 f1 f2 f3 f4 

VN 
4.49e‐15  4.67e+01  2.79e+02  4.96e‐03 

±3.68e‐15  ±5.51e+01  ±4.91e+01  ±1.04e‐02 

VN 
(9×9) 

5.28e‐15  2.25e+01  2.50e+02  5.55e‐03 

±8.54e‐15  ±3.50e+01  ±4.44e+01  ±1.26e‐02 

Table 13: ݀ ൌ 60. Iterations to a solution averaged over 
50 runs and number of successful runs. 

 f1 f2 f3 f4 

VN 

1054.24  6047.84  785.52  936.49 

±29.11 

(50) 

±4693.06 

(44) 

±738.50 

(31) 

±42.52 

(49) 

VN 
(9×9) 

1042.76  6045.90  524.41  933.90 

±52.70 

(50) 

±4264.85 

(49) 

±143.45 

(44) 

±56.99 

(49) 
 

These results, together with those discussed in 
Section 4.1, show that the proposed partially 
connected topology scales similarly to the standard 
von Neumann topology on ଵ݂, ଶ݂ and better on ଷ݂ 
and ସ݂. Please note that the 9 ൈ 9 topology was used 
here, i.e., no tuning of the grid size was done for 
optimizing the performance. This particular 
configuration is not only consistent throughout the 
proposed test set, but also robust to the problem size.  
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5 CONCLUSIONS 

This paper describes a study on the effects of 
alternative population structures on the behavior of 
the Particle Swarm Optimization (PSO). Dynamic 
and partially connected structures were tested by 
placing the particles on a grid of nodes larger than 
the swarm size. The particles move randomly on the 
grid and the network of information is defined in 
each iteration by the particle’s position in the grid 
and by its neighborhood. 

Von Neumann Structures with growing size were 
tested on a classical test set and compared to 
standard topologies. The results demonstrate that the 
proposed structure performs consistently throughout 
the test set, improving the performance of other 
topologies in the majority of the scenarios and under 
different performance evaluation criteria. The 
structure is robust to the ratio between the grid size 
and the swarm size and a fixed size with ratio 1:2 
performs well on every function. A scalability test 
was conducted by varying the dimensionality of four 
functions in the test set. The proposed topology 
scales similarly to the standard von Neumann 
topology in two functions, and better in the two 
other functions.   

In the future, the test set will include more 
functions. Non-random strategies for the movement 
based on the fitness and the Euclidean distance 
between the particles will also be considered.  

ACKNOWLEDGEMENTS 

The first author wishes to thank FCT, Ministério da 
Ciência e Tecnologia, his Research Fellowship 
SFRH/BPD/66876/2009). This work was supported 
by FCT PROJECT [PEst-OE/EEI/LA0009/2011], 
Spanish Ministry of Science and Innovation project 
TIN2011-28627-C04-02, Andalusian Regional 
Government P08-TIC-03903 and CEI-BioTIC UGR 
project CEI2013-P-14. 

REFERENCES 

Hseigh, S.-T., Sun, T.-Y, Liu, C.-C., Tsai, S.-J. 2009. 
Efficient Population Utilization Strategy for Particle 
Swarm Optimizers. IEEE Transactions on Systems, 
Man and Cybernetics—part B, 39(2), 444-456. 

Kennedy, J., Eberhart, R. 1995. Particle Swarm 
Optimization. In Proceedings of IEEE International 
Conference on Neural Networks, Vol.4, 1942–1948. 

Kennedy, J., Mendes, R., 2002. Population structure and 

particle swarm performance. In Proceedings of the 
IEEE World Congress on Evolutionary Computation, 
1671–1676. 

Liang, J. J., Qin, A. K., Suganthan, P. N., Baskar, S., 
2006. Comprehensive learning particle swarm 
optimizer for global optimization of multimodal 
functions. IEEE Trans. Evolutionary Computation, 
10(3), 281–296. 

Parsopoulos, K. E., Vrahatis, M. N., 2004. UPSO: A 
Unified Particle Swarm Optimization Scheme, Lecture 
Series on Computer and Computational Sciences, Vol. 
1, Proceedings of the International Conference of 
"Computational Methods in Sciences and 
Engineering" (ICCMSE 2004), 868-87 

Parsopoulos, K. E., Vrahatis, M. N., 2005. Unified Particle 
Swarm Optimization in Dynamic Environments. 
Lecture Notes in Computer Science (LNCS), Vol. 
3449, Springer, 590-599. 

T. Peram, K. Veeramachaneni, C. K. Mohan, Fitness-
distance-ratio based particle swarm optimization. In 
Proc. Swarm Intell. Symp., 2003, pp. 174–181. 

Shi, Y. Eberhart, R. C. 1998. A Modified Particle Swarm 
Optimizer. In Proceedings of IEEE 1998 International 
Conference on Evolutionary Computation, IEEE 
Press, 69–73.  

Trelea, I. C. 2003. The Particle Swarm Optimization 
Algorithm: Convergence Analysis and Parameter 
Selection. Information Processing Letters, 85, 317-
325. 

Performance�and�Scalability�of�Particle�Swarms�with�Dynamic�and�Partially�Connected�Grid�Topologies

55


