
Secure Keyword Search over Data Archives in the Cloud
Performance and Security Aspects of Searchable Encryption

Christian Neuhaus1, Frank Feinbube1, Daniel Janusz2 and Andreas Polze1

1Operating Systems and Middleware Group, Hasso Plattner Institut, Potsdam, Germany
2DBIS Group, Humboldt-Universit¨at zu Berlin, Berlin, Germany

Keywords: Keyword Search, Searchable Encryption, Cloud Computing, Performance, Security, Data Confidentiality.

Abstract: Encryption can protect the confidentiality of data stored in the cloud, but also prevents search. To solve this
problem, searchable encryption schemes have been proposed that allow keyword search over document collec-
tions. To investigate the practical value of such schemes and the tradeoff between security, functionality and
performance, we integrate a prototypical implementation of a searchable encryption scheme into a document-
oriented database. We give an overview of the performance benchmarking results of the approach and analyze
the threats to data confidentiality and corresponding countermeasures.

1 INTRODUCTION

Data sharing is essential to companies and govern-
ment services alike. A striking example is healthcare,
where doctor’s offices, hospitals, and administrative
institutions rely on exchange of information to offer
the best level of care and optimizing cost efficiency
at the same time. For scenarios like these, moving
to the cloud solves many problems: The scalability of
the cloud makes resources simple to provision and ex-
tend and centralization of data improves the availabil-
ity and helps to avoid information silos. Most impor-
tantly, cloud computing helps to reduce IT expenses
– an effect most welcome in healthcare. However,
concerns about data confidentiality still prevent the
use of cloud in many domains. Traditional encryp-
tion is of little help: It effectively protects the pri-
vacy of data but also prevents important operations
such as search. While efficient encryption schemes
that enable generic operations on encrypted data are
still elusive, searching over encrypted data is possi-
ble: searchable encryption schemes enable keyword
search without disclosing these keywords to the cloud
operator. The query performance of such schemes
cannot match unencrypted operation, but may well
be suitable for areas of application such as electronic
health records, where data has to be retrieved from a
cloud-hosted archive.

In this paper, we investigate the trade-off between
performance and security when using searchable en-
cryption schemes for data archives in the cloud. We

make the following contributions:
1) We report on an architecture for integrating Gohs
Z-IDX searchable encryption scheme (Goh et al.,
2003) into a database and present a practical imple-
mentation by the example of MongoDB.
2) We discuss the overhead introduced by encrypted
search and provide benchmark results on the perfor-
mance of using Gohs scheme for encrypted search
with MongoDB. These benchmarks give a meaning-
ful account of the practical performance and usability
of searchable encryption in databases.
3) We give a qualitative assessment of the security im-
plications of using searchable encryption schemes for
cloud data archives using attack-defense-tree models.
This assessment is generic to searchable encryption
and not limited to Goh’s scheme. We also discuss
mitigation strategies to manage threats by statistical
inference attacks.

2 RELATED WORK

In this section, we review related work in the field of
private database outsourcing and searchable encryp-
tion.

Private Database Outsourcing. Outsourcing pri-
vate data to a remote database inherently bears the
risk of exposure of confidential information – through
eavesdropping, data theft or malfunctions. The key

427Neuhaus C., Feinbube F., Janusz D. and Polze A..
Secure Keyword Search over Data Archives in the Cloud - Performance and Security Aspects of Searchable Encryption.
DOI: 10.5220/0005428704270438
In Proceedings of the 5th International Conference on Cloud Computing and Services Science (CLOSER-2015), pages 427-438
ISBN: 978-989-758-104-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

challenge is to protect private data from being ac-
cessed by potentially untrusted cloud providers. In
this paper, we focus on technologies that protect data
within a database. While encryption is the basic
mechanism to ensure data confidentiality, providing
an efficient database-as-a-service that can run on en-
crypted data is a challenging task. Several recent ap-
proaches try to offer solutions for outsourcing private
databases.

TrustedDB (Bajaj and Sion, 2011) and Cipherbase
(Arasu et al., 2013) offer SQL database functionali-
ties that support the full generality of a database sys-
tem while providing high data confidentiality. Both
systems use a secure co-processor for performing op-
erations on the cloud server side. The drawbacks of
such approaches are at least twofold: On one hand all
clients have to trust the secure co-processor with their
private data. On the other hand it is not clear how
the co-processor scales up in the number of clients
connected and the amount of data processed. In
CryptDB (Popa et al., 2011), the authors apply an lay-
ered approach that makes use of several cryptographic
schemes, where values are only decrypted to a level
that is required to complete the query.

Another class of approaches aims at processing
encrypted data directly without any decryption. To
this day, there are no efficient encryption schemes
that enable fully encrypted operation of a DBMS
(database management system) without loss of func-
tionality. An early approach for keyword search on
encrypted data was published by (Song et al., 2000).
An approach for securely processing exact match
queries on database cells was proposed by (Yang
et al., 2006). However, most DBMS rely on other
common operations such as range and aggregation
queries as well as updates, inserts and deletes. Ex-
isting approaches cannot efficiently process this type
of queries on encrypted data. A common solution
is to reduce data confidentiality to gain query effi-
ciency, e.g., order preserving encryption (Agrawal
et al., 2004) may reveal the underlying data order.
Most methods can be attacked by statistical analy-
sis of the encrypted data or the access patterns. An-
other solution is to lose some query efficiency in or-
der to guarantee confidentiality. While (fully) homo-
morphic encryption schemes as proposed by Rivest et
al. (Rivest et al., 1978) in fact allow the encrypted
computation of any circuit (and therefore computer
program), current constructions (see (Gentry, 2009;
Van Dijk et al., 2010)) are yet too inefficient for prac-
tical application.

Traditional databases use indices for efficient
record search. The existing methods have been
adapted to work on encrypted data (Shmueli et al.,

2005). Private indexing (Hore et al., 2004) enable an
untrusted server to evaluate obfuscated range queries
with limited information leakage. Wang et al (Wang
et al., 2011) propose a secure B+-Tree to efficiently
process any type of database query. Encrypted index-
based approaches do not rely on any trusted third par-
ties or trusted hardware. This seems to be a practical
and secure method to search in encrypted databases.
The next section discusses searchable encryption.

Searchable Encryption. Searchable encryption
schemes provide one or many cryptographic data
structures called search indices that allow encrypted
keyword search for exact keyword matches. A good
overview of searchable encryption schemes is given
in (Kamara and Lauter, 2010). In general, search-
able encryption schemes do not replace symmetric
encryption schemes but provide the search capability
through additional data structures – the index (see
figure 1). To provide keyword search on data, a list

Plaintext Keywords

Plaintext Data

Encrypted Index

Encrypted Data

Secret Key

Search Keyword

Create Index

Create Token Token

other means of encryp on

match

Figure 1: Searchable Encryption: Conceptual View.

of keywords is extracted from the plaintext. This
keyword list is used to create a secure index using
a dedicated secret key for the searchable encryption
scheme. The data is encrypted separately (usually
symmetric block ciphers such as AES) and uploaded
stored alongside the encrypted index in a remote
location. To search over the uploaded data in the
remote location, a search token in generated for a
search keyword using the secret key. This token is is
sent to the remote server. The remote sever can now
determine whether the token matches a search index
without being able to learn the keyword.

Searchable encryption schemes can be distin-
guished between Symmetric Searchable Encryption
(SSE) and Asymmetric Searchable Encryption (ASE)
schemes. SSE schemes use the same secret key both
for insertion and searching of data. In general, they
are more efficient than ASE schemes and provide
stronger security guarantees. They were first intro-
duced by (Song et al., 2000), where the authors pro-
vide a linear search capability over ciphertext – one
of the few schemes that does not make use of indices.
To speed up search, the scheme of Goh (Goh et al.,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

428

2003) uses indices that are created separately for ev-
ery searchable data item, which enables efficient up-
date. Improved search time can achieved by using an
inverted index (see e.g. (Curtmola et al., 2006)). A
scheme that enables both efficient updates and opti-
mal search time (linear in the number of documents
that contain the keyword) is offered in a recent con-
struction by Kamara et al. (Kamara et al., 2012).

In contrast, ASE schemes use different keys
for insertion and searching of data, which provides
greater flexibility. However, the constructions of ASE
schemes are generally less efficient than those of SSE
schemes and provide weaker security guarantees. The
first construction was given by Boneh et al. (Boneh
et al., 2004) and is based on elliptic curve cryptogra-
phy. Improved constructions were introduced in (Ab-
dalla et al., 2005). Unfortunately, ASE are generally
susceptible to dictionary attacks against search tokens
(see (Byun et al., 2006)). This limits the application
of ASE schemes to use case where keywords are ei-
ther hard to guess or the keyword attack is tolerable.

3 THE Z-IDX SCHEME

For our implementation, we chose the Z-IDX search-
able encryption scheme by (Goh et al., 2003). As a
symmetric scheme, it is not susceptible to dictionary
attacks on search tokens like ASE schemes (see sec-
tion 2). This scheme offers several desirable proper-
ties:

� Maturity. While the field of research in search-
able encryption schemes is rather young, Goh’s
scheme was one of the earliest proposed. In con-
trast to more recent constructions, the scheme
passed several years without the discovery of se-
curity flaws.

� Per-document Indexing. The Z-IDX scheme
creates per-document indices. This property fa-
cilitates integration into existing DBMS.

� Standard Cryptographic Primitives. The cryp-
tographic mechanisms used by Z-IDX are widely
available in software libraries for most platforms.

In this section, we give an overview of Bloom Fil-
ters and how they are used to construct Gohs Z-IDX
scheme.

3.1 Bloom Filters

The encrypted indices in Z-IDX make use of space-
efficient probabilistic data structures called bloom fil-
ters (Bloom, 1970). For a set of elements E =

fe1; :::;eng, the set membership information is en-
coded in a bit array of length l. A number of r hash
functions h1; :::;hr is selected that map every element
of E to a number 2 [1; l]. To store the set membership
of an element ex in the filter, its hash value from every
hash function h1; ::hr is calculated. These hash values
h1(ex); :::;hr(ex) are used as index positions in the fil-
ter bit array. At every referenced index position, the
bit in the array is set to 1. To test the set membership
for an element ey, the procedure is similar: All hash
values h1(ey); :::;hr(ey) are calculated and used as in-
dex positions in the filter bit array. If all positions in
the array pointed to by the hash function values are
set to 1, the element is assumed to be in the set.

. . .

..
.

1 1 10 0 0 0 0 0 0 0 0 0 0
10 2 3 4 5 6 7 8 9 10 11 30 31

H
a

sh
 F

u
n

c
o

n
s

B
lo

o
m

 F
il

te
r

B
it

 A
rr

a
y

Figure 2: Example of a Bloom Filter with a 32-bit array.

This design of bloom filters can produce false pos-
itives: If all corresponding array positions of an ele-
ment ez were set to 1 by insertion of other elements,
the bloom filter produces a false positive for ez. On
the other hand, false negatives do not occur. The false
positive rate of a bloom filter can be influenced by ad-
justing the size of the bit array and the number of hash
functions used.

3.2 Gohs Secure Indexes

Based on bloom filters, Goh constructs a secure index
scheme called Z-IDX (Goh et al., 2003) that allows
encrypted keyword search. Like similar schemes, it
does not replace other means of encryption but pro-
vides additional data structures for its functionality
(see figure 1). The scheme builds upon the abstrac-
tion of documents, which are the units of granularity
for keyword search. Every document di 2 D can con-
tain a number of keywords w 2W and is identified by
a unique ID i2 I. Authorized clients hold a secret key
Kpriv. The scheme is then defined by the following
operations:

� Keygen(s) outputs a secret key Kpriv, where s is a
variable security parameter.

� Trapdoor(Kpriv;w) outputs a trapdoor Tw for key-
word w using the secret key Kpriv.

� BuildIndex(d;Kpriv) outputs an encrypted index
for document d using the secret key Kpriv.

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

429

� SearchIndex(Tw;d) takes a trapdoor for keyword
w and tests for a match in the index of document
d. If d contains w it outputs 1 and 0 otherwise.

Additionally, a pseudorandom function f :
f0;1g� � f0;1gs ! f0;1gm is required. For a pre-
cise formal definition, e.g. with respect to bit string
lengths, please see the original publication (Goh et al.,
2003). We also omit the step of adding blinding bits
to the filter. To set up the scheme, security parameter
s, a number of hash functions r and a index size m are
chosen (for choice of m and r, see section 5.1). Then,
a secret key is generated by the Keygen operation, so
that Kpriv = (k1; ::::;kr) f0;1gsr.

To create a search index for a document d with a
set of keywords Wd = fw1; :::;wxg �W , BuildIndex
operation first creates an empty bloom filter with a bit
array of length m. First, a trapdoor Tw is calculated for
every keyword w using the Trapdoor operation, so
that Tw = (tw1 ; :::; twr) = (f (w;k1); :::; f (w;kr)). This
results in a set of trapdoors : Using the set of trap-
doors Tw1 ; :::;Twx and the id of the document d, the
set of codewords Cw1 ; :::;Cwx is calculated. For ev-
ery trapdoor Tw the codeword Cw is calculated so that
Cw = (cw1 ; :::;cwr) = (f (id; tw1); :::; f (id; twr)). Then,
the filter of the document is populated by setting ev-
ery bit position ti 1 that is referenced by the trapdoors:
For every trapdoor Cw, the bits at positions cw1 ; :::;cwr
are set to 1 (see figure 2).

To query a collection of documents for a keyword
w, the trapdoor Tw is calculated using the Trapdoor
operation and sent to the server. To test whether a doc-
ument contains the keyword, the server calculates the
codeword Cw using the trapdoor Tw and the document
id. Using the trapdoor Cw the server tests whether
all bit at positions cw1 ; :::;cwr are set to 1. If so, the
document is sent back to the client as a match. This
process is applied to all documents in the collection.
In the Z-IDX scheme, a separate index data structure
is created per document. This accounts for a search
time that is linear over the number of documents, but
facilitates the administration of secure indices, as they
can be created stored alongside the documents. This
makes the addition or removal of documents a simple
operation.

From a more technical perspective, the above
steps can be described and implemented using a keyed
hash function such as HMAC-SHA1 (Krawczyk et al.,
1997), which is also used in our implementation (see
section 4). In a first step, a keyword w is hashed with
all elements of the secret key k1; :::;kr to obtain the
trapdoor vector. The elements of the trapdoor vec-
tor are each hashed again together with the document
identifier id to obtain the codeword vector. Each of

the codeword vector elements is used as an index po-
sition to set a bit in the bloom filter bit array to 1.

4 SEARCHABLE ENCRYPTION
IN MongoDB

To evaluate the practical usability of searchable en-
cryption, we integrated the Z-IDX scheme into the
document oriented database MongoDB. In this sec-
tion, we explain why we chose MongoDB, present
the architecture of our prototype, introduce new com-
mands for secure keyword search and present imple-
mentation details.

4.1 Selection of a Database System

While the searchable encryption scheme Z-IDX can
be used standalone, its practical usability and perfor-
mance under realistic workloads can only be evalu-
ated if the scheme is used in conjunction with other
means of encryption and data handling. To do this, we
integrated Z-IDX into an existing DBMS. The choice
of a DBMS has to correspond to the basic properties
of the Z-IDX scheme – exact keyword matching as a
search mechanism and the notion of documents as the
basic units of granularity for searching.

To select a DBMS, we considered different
database paradigms: The most widespread type of
databases are relational databases – most of them
supporting the Structured Query Language (SQL).
This type of database has a long development history
and offers features such as transactional security, clus-
tering techniques and master-slave-configurations to
ensure availability. The SQL language allows detailed
queries, where specific data fields in the database
can be selected and returned base on complex crite-
ria based on structure or data field values and logi-
cal combinations thereof. The expressive power of
the SQL language goes far beyond simple keyword
search. It is therefore difficult to isolate queries that
can make use of searchable encryption. Additionally,
the fine-grained selection of data fields does not cor-
respond well to the document-oriented approach of
searchable encryption.

Besides relational databases, other database types
have been developed under the umbrella term of
NoSQL databases. A very minimalistic approach are
key-value stores (e.g. Redis, Dynamo): They omit
many of the features known from SQL databases in
favor of simplicity and performance. However, the
complexity of data structures is severely limited. This
makes storing documents and associated indices dif-
ficult or impossible.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

430

Document-oriented databases, however, are well-
suited to implement searchable encryption. As
the name suggests, data is organized in containers
called documents as opposed to tables in relational
databases. These documents are the units of granu-
larity for search operations and can contain complex
data structures without adhering to a schema defini-
tion. As this approach corresponds well to the prop-
erties of searchable encryption schemes, we chose to
add searchable encryption features to the open-source
document-oriented database MongoDB.

Floratou et al. (Floratou et al., 2012) compare
MongoDB to Microsoft SQL Server. They show that
relational databases may have better query perfor-
mance. However, MongoDB is optimized for stor-
ing data records across multiple machines and offers
efficient load balancing, which makes it more suit-
able for cloud-based applications. Furthermore, the
increasing use of NoSQL databases in real world ap-
plications lead to an increasing demand for enhanc-
ing these databases with privacy technologies such as
searchable encryption.

4.2 Extended MongoDB Commands

As MongoDB is a document-oriented database, a doc-
ument is the primary unit of abstraction for organiza-
tion of data. A document does not adhere to a fixed
schema and can store data in a JSON-like fashion
of field-value pairs. Like in JSON, documents sup-
port a number of primitive data types (e.g. integer,
String) and a data structures like arrays. All of these
data structures can be nested. In addition to standard
JSON, MongoDB can also store binary data in fields.

Documents in MongoDB are stored in collec-
tions, these, in turn, are stored in a database. The
prime commands for data handling in collections are
insert() and find(). They accept a document as a
parameter. To make searchable encryption explicitly
available, we introduced two additional commands:

� The insertSecure() can be used to insert doc-
uments into a collection using searchable encryp-
tion. Using this command, every array of strings
in the document is removed and its content used as
keywords. The contained strings are inserted into
a Z-IDX filter or encrypted search. Every other
datatype remains untouched.

� The findSecure() command triggers encrypted
search over all documents of a collection. As a
parameter, it takes a keyword embedded in a doc-
ument, e.g.: findSecure({keyword: ’foo’})

4.3 Architecture and Implementation

To integrate searchable encryption into MongoDB,
we chose to add the extended functionality to the
server and the command line client. An overview
of the architecture of MongoDB server and client is
given in figure 3. In theory, it is possible to add
searchable encryption to MongoDB modifying only
the client but not the server. However, this leads to
a disproportionately high increase in communication
overhead as per-document operations would have to
be carried out on the client, each requiring the trans-
mission of the documents Z-IDX data structures.

MongoDB Shell Client

MongoDB

Server

Z-IDX

Module
C++ Driver

Z-IDX

Module

JavaScript Shell

User

Secret Key File

Figure 3: Architecture of MongoDB Server and Client.

The MongoDB command line client is comprised
of a JavaScript shell that uses a core driver written
in C++. The client connects to the server, which
is also written in C++. To provide searchable en-
cryption functionality, we implemented the Z-IDX
scheme (see section 3) and additional helper functions
in a separate module that is compiled both into the
server and the C++ driver of the client (Z-IDX Mod-
ule, see figure 3). As suggested by Goh, we apply data
compression (zlib) to the index data structures before
transmission over the network. As these data struc-
tures are very sparse, the compression works very ef-
fectively and the additional compute overhead is eas-
ily outweighed by reduced transmission times in most
settings.

To integrate the functionality, we made the follow-
ing modifications: The JavaScript shell is modified
to read the secret key information from a file, which
has to be passed as a parameter at startup. If a se-
cure search or insert request is identified, the request
is modified to include the secret key information. This
information is stored in a dedicated _zidx field in the
query. After this, the request is passed to the clients’
C++ driver. The C++ driver is modified to recognize
queries that contain Z-IDX key information injected
by the JavaScript shell. For inserts, a Z-IDX filter is
built and populated with the contained strings of ev-
ery string array in the document. Subsequently, the
string arrays and the key information are removed and
the command is passed on to the server. For a search
query, the C++ driver uses the key to compute trap-
doors for every search keyword. The trapdoors are
inserted, the key is removed and the query is passed

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

431

on to the server. The MongoDB server is modified
to process the search queries. For the trapdoors of a
search query, the server generates the corresponding
codewords using the document id. These codewords
are then checked against the bloom filters of a doc-
ument to test for a match. This architecture and im-
plementation makes searchable encryption available
without affecting non-encrypted use of the database,
as regular MongoDB commands are processed as ex-
pected.

5 PERFORMANCE EVALUATION

The use of encrypted search functionality introduces
an overhead in computation, storage and data trans-
mission. Since speed and throughout are critical fac-
tors for databases, we present performance measure-
ments of our approach in this section. The figures
allow to evaluate the practicability of searchable en-
cryption in databases for real-life scenarios.

To assess the performance impact of our approach,
we ran insert and search queries in encrypted and un-
encrypted settings under various parameters settings
(dictionary size, false positive rate) and analyzed the
memory footprint of the additional data structures of
Z-IDX. To avoid synthetic test data, we chose the pub-
licly available Enron corpus – a collection of emails
which we use as documents. All benchmarks were
run on a Intel Core i5-3470 machine with 8GB main
memory, running Ubuntu 12.04 LTS.

5.1 Memory Footprint of Z-IDX Filters

As the encrypted filters are added to every docu-
ment, they add overhead to communication and stor-
age footprint. They are therefore a crucial factor that
influences the performance of a database using this
scheme.

The size of these data structures is determined
by the desired false positive rate fp and the num-
ber of unique keywords to be represented by the fil-
ters n. From the false positive rate fp, the num-
ber of hash functions r is determined by calculating
r = �log2(fp). From r, the number of bits m in the
filter can be determined by calculating m = nr=ln2
. In practice, these data structures can become quite
large. This is especially unfavourable in settings with
large numbers n of distinct keywords and small doc-
ument sizes, as the filter sizes can easily exceed the
size of the original documents.

To improve the efficiency of the scheme, data
compression can be used on the filters (as suggested
by Goh). While filter compression decreases storage

and communication overhead, it also introduces ad-
ditional steps of computation on the client and server
side: Upon document insertion, filters have to be com-
pressed and decompressed for every search operation.
This represents a tradeoff between data size and com-
putational overhead.

To investigate this issue, we first tested the ef-
fectiveness of compression on indexes. In practice,
these filters are bit array that contain mostly 0’s and
sparsely distributed 1’s (depending on the number of
contained keywords). To determine the achievable
compression ratio, we used a set of 1000 documents
from the Enron corpus containing 127.5 keywords on
average. Assuming a set of 100000 distinct keywords
and a false positive rate of 0.0001% leads to an un-
compressed filter size of 252472 bytes. We imple-
mented the compression of filters using the free zlib1

compression library. Using the zlib standard compres-
sion strategy, the average compression ratio achieved
is 0.02 with the given parameters. Using a run-length
encoding strategy that exploits the sparse property of
the filters, compression becomes even more effective
with an average compression ratio of 0.0154. This
means that using compression, filter sizes can be con-
siderably reduced in size (here: to 1.54% of their
original size, average size of compressed filters 3889
bytes).

Our benchmarking results show that using filter
compression dramatically speeds up database opera-
tions even over fast network connections (100 Mbit/s
speed). This means that the overhead for data com-
pression is by far outweighed by the advantage in net-
work transmission speed due to smaller filters. There-
fore, we use RLE-based filter compression as a de-
fault in all subsequent measurements.

200 400 600 800

5
0

0
0

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0

Number of Keywords

C
o

m
p

re
s
s
e

d
 f
ilt

e
r

s
iz

e
 (

b
y
te

s
)

Figure 4: Relationship between number of document key-
words and compressed filter size.

It can be observed that the size of compressed fil-
ters is closely correlated with the number of repre-
sented keywords (see figure 4): Documents with few

1http://zlib.net/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

432

keywords have small compressed filters while more
keywords produce larger sizes. This means that a
trade-off of the Z-IDX scheme is mitigated: To ac-
commodate large sets of distinct keywords without
false-positives, large filter sizes are required. These
large filters take up of large amounts of memory
– even for small documents with few or no key-
words at all. However, using compression, filter
sizes can be generously chosen as compressed filters
remain compact, depending on the number of key-
words in the document. In fact, using the settings
above, compressed filter sizes are 3389 bytes on aver-
age. When increasing the number of unique keywords
from 100000 to a million (tenfold) , the average size is
only 6648 bytes on average (only a twofold increase).

5.2 Query Performance

To assess the performance of the scheme, we evalu-
ated insert and search performance of our Z-IDX im-
plementation embedded in MongoDB. To obtain re-
alistic results, we tested our setup under two differ-
ent network profiles: The LAN profile corresponds to
the typical properties of a wired local network (2ms
ping, 100 Mbit/s), the WAN profile corresponds to the
properties of a domestic internet connection in Ger-
many (20ms ping, 10 Mbit/s). For reference, the same
benchmarks were also conducted with a Localhost
profile, where the network delays are essentially non-
existent. The LAN and WAN profiles were generated
by using network link conditioning on the machines’
loopback network device, using Linux’ tc command.
All benchmarks were conducted using a false posi-
tive rate of 0.001 and a maximum dictionary size of
10000.

Insert Query Performance. To assess the perfor-
mance of insert queries, we inserted a collection of
10000 documents from the Enron corpus in batches of
100. We ran every insert query 100 times and took the
mean as our measurement value. The results for these
queries in the Localhost, LAN and WAN profiles for
encrypted and unencrypted operation are shown in
figure 5. The longer duration of encrypted operation
is explained by the additional steps required on the
client: Before submission of a document, a Z-IDX fil-
ter has to be created using the document’s keywords
and the document content has to be encrypted. The Z-
IDX filter introduces data which slightly increases the
time of data transmission. On the server, no additional
steps have to be executed on insert. Our experiments
show that the performance penalty for encryption in
insert queries is indeed moderate: In the Localhost-
and LAN-settings, the insert time is about doubled

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

Localhost	
 LAN	
 WAN	

In
se
rt
	
 (
m
e	

(m

ill
is
ec
on

ds
)	

Unencrypted	

Encrypted	

Figure 5: Benchmark: Insert of 10000 documents.

compared to the unencrypted setting. In the WAN
setting, where network performance has a larger ef-
fect, the duration of encrypted and unencrypted insert
queries are nearly the same.

Search Query Performance To determine the per-
formance of search queries, we issued a search query
with a randomly chosen keyword on the same doc-
ument collection as used in the insert queries. We
ran every search query 100 times and took the mean
as our measurement value. The results for these
queries in the Localhost, LAN and WAN profiles for
encrypted and unencrypted operation are shown in
figure 6. The duration of encrypted search queries

0	

100	

200	

300	

400	

500	

600	

700	

800	

Localhost	
 LAN	
 WAN	

Q
ue

ry
	
 '
m
e	

(m

ill
is
ec
on

ds
)	

Unencrypted	

Encrypted	

Figure 6: Benchmark: Query over 10000 documents.

is increased significantly compared to unencrypted
operation, due to a fundamental difference between
search implementation: Searching in an unencrypted
database is usually carried out using an inverted
index, where the matching documents for a given
keyword can be looked up with linear complexity
(O(1)). In encrypted operation using the Z-IDX-
scheme, search complexity is linear in the number of
documents in the collection (O(n), n=number of doc-
uments). As a result, the unencrypted search time is
very small (0,13 ms in the Localhost setting, 2,32 ms
LAN, 20,37 ms WAN) when compared to encrypted
operation and mainly determined by the network la-
tency. In contrast, encrypted searches took around

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

433

half a second (� 530 ms), with little variation depend-
ing on network performance, as only little data had to
be transmitted.

5.3 Implications for Practical Use

Our measurements have shown that the performance
penalty for using the Z-IDX searchable encryption
scheme in a database is very unevenly distributed:
While the performance penalty for insert queries is
almost negligible in under realistic conditions (WAN
profile), the penalty for search queries is tremendous
by comparison. At the same time, the query per-
formance varies greatly depending on collection size
(linear effort) and filter parameters: A search query
on a 10000-documents-collection in our experiments
took between 219 ms (fp = 0:01, n = 1000) and 4612
ms (fp = 0:0001, n = 100000).

6 SECURITY

The motivation for using searchable encryption
schemes such as Z-IDX is to protect the confiden-
tiality of information that is stored on untrusted in-
frastructures (e.g. cloud providers). In this section,
we give a qualitative evaluation of the security im-
plications when searchable encryption schemes are
used to search over encrypted data stored on a remote
server. This security evaluation is generally applica-
ble to searchable encryption schemes that correspond
to the abstract model given in section 6 and there-
fore not specific to Goh’s Z-IDX scheme (Goh et al.,
2003), unless explicitly noted otherwise.

The security of computer systems constituted by
the attributes of confidentiality, integrity and avail-
ability (as defined in the ITSEC criteria (ITSEC,
1991), see also (Avizienis et al., 2004)). As the
purpose of searchable encryption is to protect the
searched keywords from being disclosed to unautho-
rized parties, we focus our evaluation on the property
of data confidentiality of search keywords.

Abstract System Model. For the security evalua-
tion, we assume a setup as shown in figure 7 (see also
(Islam et al., 2012)). A server holds a set of n docu-
ments Doc1; : : : ;Docn. It also holds an encrypted data
structure which contains a mapping for every key-
word w 2W to all documents containing w. To query
the encrypted index, the client generates a trapdoor Tw
and sends it to the server over the network. Using this
trapdoor, the server can determine all documents that
contain keyword w and sends them back to the client
over the network. The mapping between keywords

and trapdoors w 7! Tw is deterministic, i.e. under the
same encryption key there exists exactly one trapdoor
Tw for every keyword w. These properties apply to
most symmetric searchable encryption schemes.

client network link server

encrypted

index

Trapdoor

Matching Documents
client

trusted honest-but-curious

Figure 7: Encrypted Search on a remote system: Abstract
Model.

Attacker Model. Attacks to learn the plaintext of
keywords and their association with encrypted docu-
ments can generally be undertaken in any part of the
architecture. Attacks on the client are the the most
dangerous, as clients hold the cryptographic key and
handle unencrypted information. We assume autho-
rized users on these clients to be trustworthy. For
the operator of the network link and the server we
assume a honest-but-curious attacker model (see e.g.
(Lindell et al., 2008)) : These operators will generally
execute programs and transmit information correctly
and faithfully, but can record arbitrary information
and perform additional calculations on it. Under this
adversarial model, data confidentiality is challenged
while integrity and availability are not affected.

6.1 Threats to Keyword Confidentiality

To illustrate the threats to the confidentiality of key-
words in the system we use the ADTree model
(Attack-Defense-Trees, see (Kordy et al., 2012; Bag-
nato et al., 2012)), which build upon the concept of
attack trees (Schneier, 1999). Attack trees are used
to model the threats to a specific security property
of a system and their logical interdependencies. In-
dividual threats are represented as leaves of the tree
and are connected by AND and OR operators to the
root of the tree, which represents a specific security
property. The attack of the system that corresponds
to a specific threat is indicated in the model by as-
signing a boolean TRUE value of the node in the tree.
If a combination of attacks results in a propagation
of a TRUE value to the root node the security prop-
erty is considered to be breached. By evaluating the
attack tree, sets of possible attacks can be derived.
The ADTree model extends attack trees by introduc-
ing and explicitly modeling countermeasures, which
can be employed to mitigate or prevent attacks. In
figure 8, an ADTree shows threats for keywords con-
fidentiality in searchable encryption schemes and ac-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

434

Countermeasure

Attack

Disclose

Keywords

Attacks on

Client

Data Theft by

Authorized

Users

Attacks by

Unauthorized

Users

Client

Security

Physical

Security

OS Security

Mechanisms

Encryption of

local Storage

Network

Data Sniffing

End-to-end

Encryption

Attacks on

Server

Break

Encryption

Scheme

Statistical

Inference

Introduce

Noise

Figure 8: Attack-Defense-Tree: Threats for Confidentiality
of Keywords.

cording countermeasures. Attacks to learn keywords
can be undertaken on the client, on the network and
the server which holds the encrypted index. In the
following sections, we discuss the relevance and im-
plications of the shown threats and their countermea-
sures.

6.2 Attacks on the Client

Attacks on the client are potentially severe as the
client handles plaintext data and holds the crypto-
graphic key for the searchable encryption scheme. By
obtaining the key, an attacker can uncover document-
keyword associations by generating valid queries and
launching a dictionary attack against either the server
or against intercepted trapdoors. Theft of data or
keys cannot by authorized users cannot be prevented.
However, in our attacker model, we assume the au-
thorized users to be trustworthy. To protect the assets
of the client systems against unauthorized users, dif-
ferent methods can be employed: Physical security
measures can prevent unauthorized users from get-
ting physical access to client machines. The security
mechanisms of the clients operating system can en-
sure that only authorized users can log onto the ma-
chines directly or via network. Finally, data on the
clients mass storage can be protected by hard disk en-
cryption.

6.3 Network Data Sniffing

Interception of data exchanged by searchable encryp-
tion protocols could threaten the confidentiality of
keywords as statistical properties of the trapdoor-
keywords-associations can be exploited (for more de-
tail, see section 6.4). If general security flaws of the
underlying scheme become known, these could also
be exploited. Data sniffing on the network can how-
ever easily be prevented by encryption of network
traffic between client and server (e.g. by using Trans-
port Layer Security).

6.4 Attacks on the Server

In general, threats that originate from network data
sniffing also exist on the server, as the entire commu-
nication of the scheme is observable. However, as the
searchable encryption scheme has to be processed on
the server (i.e. matching of trapdoors to documents),
an additional layer of encryption is not an option. In
addition, the server also has direct access to the en-
crypted index, which could make attacks targeting
this data structure very efficient. As the server can
also monitor the program execution, side-channel at-
tacks are theoretically possible (e.g. timing attacks).
In the following, we discuss the implications of these
threats.

Attacks to the Encryption Scheme. The confiden-
tiality of the keywords depends on the trust in the cho-
sen underlying searchable encryption scheme. In the
first place, it is desirable to use algorithms that are
openly published and examined by cryptographic ex-
perts. In general, searchable encryption schemes are
an active field of research, with many constructions
from the recent past (see section 2) that need more
evaluation before they can be considered mature.

The Z-IDX scheme by Goh is among the oldest
searchable schemes with no general attacks to the
scheme published. The construction of the scheme is
based on keyed hash functions, which are well exam-
ined and proved cryptographic tools (HMAC SHA-1
(Krawczyk et al., 1997)). The scheme fulfills three
security properties suggested by (Song et al., 2000):
It supports hidden queries as the generated trapdoors
do not reveal the keyword. Valid trapdoors cannot be
generated without possession of the secret key (con-
trolled searching). Both properties are ensured by us-
ing a keyed hash function. Finally, the scheme ful-
fills the property of query isolation which means that
the server learns nothing more than the set of match-
ing documents about a query. This security prop-
erty is formalized as the IND-CKA (Semantic Secu-
rity Against Adaptive Chosen Keyword Attack) prop-
erty: An adversary is given two documents D0 and D1
and an index which encodes the keywords of one of
these documents. If the adversary cannot determine
which documents keywords are encoded in the index
with a probability significantly better than 1

2 the in-
dex is considered IND-CKA-secure. To the best of our
knowledge, no attacks that break IND-CKA-security
of the Z-IDX scheme have been published to date.

Statistical Inference. Attacks using statistical in-
ference are a possible against all searchable encryp-
tion schemes that follow the basic model outlined in

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

435

section 6. The threat of these attack is not based
on weaknesses in the cryptographic constructions of
searchable encryption schemes but is a direct conse-
quence of the basic characteristics of such schemes.
Under the same secret key Kpriv, a keyword w is al-
ways mapped to the same trapdoor Tw. This allows the
server to observe tuples (w;fDw

1 ; :::;D
w
mg), i.e. combi-

nations of encrypted queries and the set of matching
documents, which leak statistical information: The
sever can learn the frequency of certain queries as
they occur over time and learn about the occurrence
and frequency of distinct keywords in the document
collection. While statistical information does not di-
rectly reveal keywords, it can be exploited to infer the
semantics or plaintext of keyword using background
knowledge about the data exchanged in the system.
When handling medical data for example, very ac-
curate assumptions about the prevalence of a specific
medical condition among a population can be made
using public sources of information. If this prevalence
is expressed using a keyword and no other keyword
in the document set possesses the same frequency, it
is easy to infer the meaning of this keyword. While
the given example might be trivial, statistical attack
can pose a serious threat to the confidentiality of key-
words. We review two practical attacks that have been
published:

Search Pattern Leakage in Searchable Encryp-
tion: Attacks and New Constructions. (Liu et al.,
2013) propose an attack based on the frequency of
search patterns. The salient feature of the approach
is that the frequency fq at which a keyword q occurs
is sampled over time, resulting in a frequency vec-
tor Vq = fV 1

q ; :::;V
p

q g for a specific keyword. Back-
ground knowledge for a dictionary of keywords D =
fw1; :::;wmg is drawn from external sources (the au-
thors propose Google Trends) and represented as fre-
quency vectors V = fVw1 ; :::;Vwmg. To infer the plain-
text of a keyword, a distance measuring function
Dist(V;Vwi) is used to determine the vector 2 V with
the smallest distance to Vq – the corresponding key-
word is then assumed to be q. The attack is amended
by an active approach, where the background knowl-
edge is adapted to a specific scenario (e.g. health-
care) to improve accuracy. To test the accuracy of
their attack, they use frequency vectors obtained from
Google Trends for the 52 weeks of the year 2011 and
add varying levels of gaussian noise to simulate user
queries. They show that under certain circumstances
(e.g. keyword dictionary size of 1000, limited level
of noise) it is easy to guess the keyword with a very
high accuracy. They also present mitigation strate-
gies, which are based on inserting random keywords

along with every query, but do not consider the actual
document matching on the server.

Access Pattern Disclosure on Searchable Encryp-
tion: Ramification, Attack and Mitigation. (Is-
lam et al., 2012) propose a statistical attack which
is based on the frequency at which keywords appear
in the document set. As background knowledge, in-
formation about the probability of two keywords oc-
curring in the same document is assumed. This in-
formation can be obtained by scanning public doc-
ument sources for a dictionary keywords k1; :::;km.
It is represented by a m�m matrix M, where Mi; j
contains the probability of keywords ki and k j occur-
ring in the same document. The attacker then tries
to find an order of encrypted queries q1; :::;qm whose
results set produce another matrix which is similar to
M. This sequence that produces the matrix most sim-
ilar to M is considered the result of the attack and re-
veals keywords by aligning the vectors of queries and
keywords so that qx corresponds to mx. The prob-
lem can be formalized by expressing the closeness
between matrices as an arithmetic distance. The au-
thors use simulated annealing to determine a keyword
sequence that minimizes this distance. The quality
of the attack is the percentage of keywords that are
guessed correctly. This percentage is improved if the
background knowledge also includes a set of known
query-trapdoor associations – this is however not re-
quired. With 15% known queries of 150 observed
queries, their attack was able to infer close to 100% of
a set of 500 keywords correctly. To counteract the pre-
sented attack, they also suggest the insertion of noise
to hide statistical properties of the query-document
associations. Encrypted index structures are consid-
ered (a;0)-secure if for every keyword there are a�1
keywords that appear in the same set of documents -
limiting an attackers probability of correctly inferring
a keyword to 1

a
at best.

6.5 Implications for Practical Use

The threat model in section 6.1 shows that attacks on
the confidentiality are possible in every part of the
system. However, as shown in the previous sections,
attacks by unauthorized users on the client and the
network can effectively mitigated by access control
and encryption. The most relevant threat is the pos-
sibility of inferring keywords by exploiting statistical
properties that can be observed by monitoring queries.
The threat posed by statistical inference attacks de-
pends strongly on the set of keywords and their dis-
tribution in the document set. Statistical inference at-
tacks are only a minor concern if the individual key-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

436

words exhibit very similar statistical properties, e.g.
serial numbers that are evenly distributed across doc-
uments. However, attributes with statistical properties
that could be available as background knowledge (e.g.
medical diagnoses) to an attacker need to be treated
with great caution and might require noise insertion.

7 CONCLUSION

In this paper, we evaluated the practical usability of
searchable encryption for data archives in the cloud,
illustrated by embedding an implementation of Goh’s
searchable encryption scheme into MongoDB. We
found that the use of compression on the additional
data structures keeps the data size at tolerable lev-
els and relative to the number of embedded search
keywords. Performance benchmarks revealed that for
insert operations under typical network parameters,
the additional overhead for insert operations is neg-
ligible compared to unencrypted operation. Search
queries however exhibit a considerable impact for en-
crypted operation, as search operations are linear to
the number of documents in Goh’s scheme. However,
the measured durations of encrypted queries could
be acceptable for interactive use where the added se-
curity is required. To evaluate the security proper-
ties of searchable encryption, we presented threats
to keyword confidentiality as an attack-defense-tree
model, which applies to most searchable encryption
schemes. The most relevant threat comes from in-
ference attacks, which are possible if the keywords
exhibit strong statistical properties which can be ex-
tracted using background knowledge. In such cases,
noise insertion techniques can be used to mitigate
such attacks.
Further research could investigate the performance
more recent constructions of searchable encryption
schemes with constant search complexity (e.g. (Ka-
mara et al., 2012)) and schemes that provide extended
search capabilities, such as range queries (see e.g.
(Boneh and Waters, 2007; Wang et al., 2011)).

ACKNOWLEDGEMENTS

The authors would like to thank Martin Kreichgauer
for providing the prototypical implementation of the
Z-IDX scheme and the MongoDB integration.

REFERENCES

Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno,
T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P.,
and Shi, H. (2005). Searchable encryption revisited:
Consistency properties, relation to anonymous IBE,
and extensions. In Advances in Cryptology–CRYPTO
2005, pages 205–222. Springer.

Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2004).
Order preserving encryption for numeric data. In Pro-
ceedings of SIGMOD ’04 International Conference on
Management of Data, pages 563–574. ACM.

Arasu, A., Blanas, S., Eguro, K., Joglekar, M., Kaushik, R.,
Kossmann, D., Ramamurthy, R., Upadhyaya, P., and
Venkatesan, R. (2013). Secure database-as-a-service
with cipherbase. In Proceedings of SIGMOD ’13
International Conference on Management of Data,
pages 1033–1036. ACM.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable
and secure computing. Dependable and Secure Com-
puting, IEEE Transactions on, 1(1):11–33.

Bagnato, A., Kordy, B., Meland, P. H., and Schweitzer, P.
(2012). Attribute decoration of attack–defense trees.
International Journal of Secure Software Engineering
(IJSSE), 3(2):1–35.

Bajaj, S. and Sion, R. (2011). Trusteddb: A trusted hard-
ware based database with privacy and data confiden-
tiality. In Proceedings of SIGMOD ’11 International
Conference on Management of Data, pages 205–216.
ACM.

Bloom, B. H. (1970). Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426.

Boneh, D., Di Crescenzo, G., Ostrovsky, R., and Per-
siano, G. (2004). Public key encryption with keyword
search. In Advances in Cryptology-Eurocrypt 2004,
pages 506–522. Springer.

Boneh, D. and Waters, B. (2007). Conjunctive, subset, and
range queries on encrypted data. In Theory of cryp-
tography, pages 535–554. Springer.

Byun, J. W., Rhee, H. S., Park, H.-A., and Lee, D. H.
(2006). Off-line keyword guessing attacks on recent
keyword search schemes over encrypted data. In Se-
cure Data Management, pages 75–83. Springer.

Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R.
(2006). Searchable symmetric encryption: improved
definitions and efficient constructions. In Proceedings
of the 13th ACM conference on Computer and com-
munications security, pages 79–88. ACM.

Floratou, A., Teletia, N., DeWitt, D. J., Patel, J. M., and
Zhang, D. (2012). Can the elephants handle the nosql
onslaught? Proc. VLDB Endow., pages 1712–1723.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of Computing, pages 169–178.
ACM.

Goh, E.-J. et al. (2003). Secure indexes. IACR Cryptology
ePrint Archive, 2003:216.

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

437

Hore, B., Mehrotra, S., and Tsudik, G. (2004). A privacy-
preserving index for range queries. In Proceedings of
the 13th International Conference on Very Large Data
Bases, VLDB ’04, pages 720–731.

Islam, M., Kuzu, M., and Kantarcioglu, M. (2012). Access
pattern disclosure on searchable encryption: Ramifi-
cation, attack and mitigation. In Network and Dis-
tributed System Security Symposium (NDSS’12).

ITSEC (1991). Information technology security evaluation
criteria (itsec): Preliminary harmonised criteria. Tech-
nical report, Commission of the European Communi-
ties.

Kamara, S. and Lauter, K. (2010). Cryptographic cloud
storage. Financial Cryptography and Data Security,
pages 136–149.

Kamara, S., Papamanthou, C., and Roeder, T. (2012). Dy-
namic searchable symmetric encryption. In Proceed-
ings of the 2012 ACM conference on Computer and
communications security, pages 965–976. ACM.

Kordy, B., Mauw, S., Radomirović, S., and Schweitzer, P.
(2012). Attack-defense trees. Journal of Logic and
Computation.

Krawczyk, H., Bellare, M., and Canetti, R. (1997). HMAC:
Keyed-Hashing for Message Authentication. RFC
2104 (Informational). Updated by RFC 6151.

Lindell, Y., Pinkas, B., and Smart, N. P. (2008). Imple-
menting two-party computation efficiently with secu-
rity against malicious adversaries. In Security and
Cryptography for Networks, pages 2–20. Springer.

Liu, C., Zhu, L., Wang, M., and an Tan, Y. (2013). Search
pattern leakage in searchable encryption: Attacks and
new constructions. Cryptology ePrint Archive, Report
2013/163.

Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakr-
ishnan, H. (2011). Cryptdb: Protecting confidentiality
with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, pages 85–100. ACM.

Rivest, R. L., Adleman, L., and Dertouzos, M. L. (1978).
On data banks and privacy homomorphisms. Founda-
tions of secure computation, 32(4):169–178.

Schneier, B. (1999). Attack trees. Dr. Dobb’s journal,
24(12):21–29.

Shmueli, E., Waisenberg, R., Elovici, Y., and Gudes,
E. (2005). Designing secure indexes for encrypted
databases. In Proceedings of the 19th Annual IFIP
WG 11.3 Working Conference on Data and Applica-
tions Security, DBSec’05, pages 54–68.

Song, D. X., Wagner, D., and Perrig, A. (2000). Practical
techniques for searches on encrypted data. In Secu-
rity and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, pages 44–55. IEEE.

Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan,
V. (2010). Fully homomorphic encryption over the in-
tegers. Advances in Cryptology–EUROCRYPT 2010,
pages 24–43.

Wang, S., Agrawal, D., and El Abbadi, A. (2011). A com-
prehensive framework for secure query processing on
relational data in the cloud. In Proceedings of the
8th VLDB Workshop on Secure Data Management,

SDM’11, pages 52–69, Berlin, Heidelberg. Springer-
Verlag.

Yang, Z., Zhong, S., and Wright, R. N. (2006). Privacy-
preserving queries on encrypted data. In Proceedings
of the 11th European Conference on Research in Com-
puter Security, ESORICS’06, pages 479–495.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

438

