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Abstract: In traditional manufacturing processes the selection of appropriate process parameters can be a difficult task 

which relies on rule-based schemes, expertise and domain knowledge of highly skilled workers. Usually the 

parameter settings remain the same for one production lot, if an acceptable quality is reached. However, each 

part processed has its own history and slightly different properties. Individual parameter settings for each part 

can further increase the quality and reduce scrap. Machine learning methods offer the opportunity to generate 

models based on experimental data, which predict optimal parameters depending on the state of the produced 

part and its manufacturing conditions. In this paper, we present an approach for selecting variables, building 

and evaluating models for adaptive parameter settings in manufacturing processes and the application to a 

real-world use case. 

1 INTRODUCTION 

Product and process quality is playing an increasingly 

important role in the competitive success of 

manufacturing companies (Robinson and Malhotra 

2005). As a consequence, this trend forces 

manufacturing companies to further improve their 

production (Wuest et al., 2014). 

In general, quality is defined as the degree to 

which a commodity meets the requirements of the 

customer (DIN EN ISO 9001:2015). In this context, 

customers are not only the users of final products; 

they can also be other companies in a supply chain 

network. When a company is a supplier of 

components, which serve as assembly parts in a final 

product, then important quality requirements are 

dimensions of parts, which have to be within 

predefined tolerances. There exist International 

Tolerance Grades of industrial processes, which 

identify what tolerances a given process can produce 

for a given dimension (ISO 286-1:2010). If an 

industrial process is more precise, less scrap is 

produced or even a higher tolerance class can be 

achieved and the produced components can generate 

more profit for the company. 

The appropriate and prompt selection of process 

parameters in manufacturing processes plays a 

significant role to ensure the quality of the product, to 

reduce the machining cost and to increase the 

productivity of the process (Pawar and Rao, 2013). In 

practice, the adjustment of process parameters to get 

dimensions of a produced part in predefined 

tolerances can be a difficult task. Traditional control 

systems rely on rule-based schemes, expertise and 

domain knowledge of highly skilled workers or on 

trial and error. Furthermore, modern manufacturing 

processes are becoming more and more complex and 

modelling every aspect of a process in a rule- and 

expert-based system is getting challenging or even 

impossible. 

The phase of parameter adjustment consumes 

precious production time where scrap parts are 

processed. Once an acceptable setting of parameters 

is obtained, it is common to remain it unchanged for 

the whole production lot. However, each part 

processed has its own history and slightly different 

properties. Individual parameter settings for each part 

can further increase the quality and reduce scrap. 

Machine learning (ML) methods offer the 

opportunity to generate models based on 

experimental data, which automatically predict 

optimal parameters depending on the state of the 

produced part and its manufacturing conditions. 

This paper contributes to the application of ML 

methods for parameter setting in manufacturing 

processes and addresses the following research ques- 
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tions: 

- How can ML methods be integrated in a 

framework for adaptive parameter setting? 

- Which ML methods are suitable in models for 

adaptive parameters settings? 

- Which accuracy can be reached when predicting 

quality measures and is this accuracy sufficient 

for practical applications? 

We provide the related work to this topic in Section 2 

and present the methodology of the developed 

approach in Section 3. Afterwards, we apply and 

evaluate our approach in a use case based on real-

world manufacturing data in Section 4. Concluding 

remarks follow in the final Section 5.  

2 RELATED WORK 

There exist literature of parameter optimization and 

parameter setting for different kinds of manufacturing 

processes. 

For the injection moulding process there are 

different approaches. A common design method to 

reduce the amount of simulation runs and to consider 

interaction effects of parameters is the Taguchi 

method (Oliaei et al., 2016; Tian et al., 2017). It is 

used to find a better initial point for the optimization 

and to reduce time for solving the problem.  For the 

optimisation of a multi-objective problem a 

combination of Response Surface Methodology 

(RSM) and non-dominated sorting genetic algorithm 

II (NSGA II) is used (Park and Nguyen, 2014; Tian et 

al., 2017). The function generated out of the RSM is 

optimized with the NSGA II. As initial values for the 

first iteration of the genetic algorithm it is possible to 

use results from the Taguchi method or to generate 

random values within a set range. Oliaei et al., (2016) 

used an Artificial Neural Networks (ANN) with the 

learning algorithm of back-propagation to optimize 

the quality. In their work, they compared the results 

of the Taguchi method with the results of the ANN. 

In both methods the same sample set was used. The 

results show that there is a slight difference between 

them.  

In Additive Manufacturing unsuitable process 

parameters influence the quality of 3D printed parts 

adversely. There exist various approaches to use 

Machine Learning to choose optimal process 

parameters for different technologies in 3D printing 

(Fused Deposition Modeling, Selective Laser Melting 

or Sintering). The most popular method used is 

Artificial Neural Networks (ANN) (Collins et al., 

(2014), Ding et al., (2016)) which performs good due 

to the provided flexibility. Although comparisons 

show that in some cases regression is only slightly 

worse (Xiong et al., (2014), Mohamed et al., 2016). 

Cook et al., (2000) develop an ANN to model the 

relationship between process operating parameters 

and a critical strength parameter in a particleboard 

manufacturing process. Then a genetic algorithm is 

applied to determine the process parameter values, 

which result in desired levels of the strength 

parameter.  

Park and Kim (1998) present a review on artificial 

intelligence approach which attempt to automatically 

adapt and optimize the CNC machining parameters 

based on sensor information in real time. Again ANN 

is the dominating method in this field of application. 

Venkata Rao and Kalyankar (2013) present an 

approach for process parameter optimization in a 

multi-pass turning operation. They developed a 

teaching-learning-based optimization algorithm, 

which outperforms other optimization methods in 

their multi-objective and single-objective examples. 

It is stated that this algorithm can be easily modified 

for parameter optimization of other manufacturing 

processes, such as casting, forming and welding. 

An approach for estimating control parameters of 

a plasma nitriding process is presented in Kommenda 

et al., (2015). They solve inverse optimization 

problems to find good combinations of parameters 

such that desired product qualities can be fulfilled 

simultaneously. 

As already slight variations of the product state 

during production can lead to costly and time-

consuming rework or even scrap, Wuest et al., (2014) 

suggest an approach based on recording of the 

individual product’s state along the entire production 

process. Whereas condition monitoring is mostly 

focused on a single manufacturing process, 

monitoring of the whole manufacturing programme 

has to be further investigated (Choudhary et al., 

2009). Wuest et al., (2014) suggest a combination of 

cluster analysis and support vector machines (SVM) 

to achieve the goal of improved quality monitoring. 

They provide a theoretical example to illustrate the 

potential of the approach, but the application to a real-

life manufacturing process is missing. 

This paper applies the concept of tracking the 

individual product state to predict quality relevant 

requirements of finished manufactured parts. As the 

considered target variables are numeric (e.g. 

dimensions of the part), instead of classification (e.g. 

good and bad parts), methods for regression are 

chosen. Furthermore, the developed approach is 

evaluated on data from a real-life industrial 

environment. 
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3 METHODOLOGY 

In this section, an approach for the setting of process 

parameters of a manufacturing process is developed. 

The setting of the process parameter is adaptive for 

each produced part depending on its properties and 

previous manufacturing conditions. First, the 

collection of the necessary process and product data 

is presented. Then the basic concept of the parameter 

setting is introduced. Based on this concept the next 

steps are data pre-processing, the selection of a 

suitable machine learning model and its evaluation 

based on different criteria. 

3.1 Data Collection 

We consider a multi-stage manufacturing process, 

consisting of N consecutive steps (Figure 1). In each 

step a physical transformation of the product is 

performed, so that, starting from the raw material in 

step 1, the final product is finished in step N. The 

approach, which is developed in this section, refers to 

parts of one specific product type. If there are 

multiple product types in the manufacturing system, 

it is possible to apply this approach to each type 

separately.  

The basic idea is to record all relevant product and 

process variables of each manufactured part. Due to 

variations in material properties and manufacturing 

conditions (e.g. machine and tool conditions, 

environmental conditions, influence of human 

workers) each part will be characterised by individual 

values of the variables, which describe the life cycle 

of the part during the manufacturing process. This 

concept is introduced by Wuest et al., (2011) as 

product state based view. 

In our approach, it is important to distinguish 

between independent and dependent variables. Some 

of the product and process variables, like the type of 

raw material or the adjustment of process parameters, 

can be manually selected and are not influenced by 

other recorded variables. Other variables, like quality 

relevant properties of the part, depend on the values 

of multiple variables, although the precise 

relationships are not known in practice. 
 

 

Figure 1: Product and Process Variables. 

3.2 Basic Concept 

The final objective is to determine appropriate, 

adaptive parameter settings of the last production step 

for a specific part based on its manufacturing life 

cycle to fulfil the quality requirements. The selection 

of multiple process parameters is likely to deliver a 

manifold of solutions whereas the fulfilment of 

multiple quality requirements won’t be feasible in 

general. Therefore, we restrict our approach to the 

determination of one process parameter of the last 

production step (u), in order to fulfil a single relevant 

quality requirement (z). The considered process 

parameter belongs to the independent process 

variables of step N and the quality requirement is part 

of the dependent product variables of step N. In our 

approach, we take only numeric quality measures into 

account, like critical dimensions or the weight of the 

part.  
 

 

Figure 2: Basic Concept. 

To achieve this goal, we suggest a two-step 

approach (see Figure 2). First, we model the 

relationship between the quality measure and relevant 

product and process variables, including the selected 

process parameter, by a function f. 
 

ˆ ( , , )ij ijz f x y u  (1) 
 

This function enables the prediction of the relevant 

quality measure ( ẑ ) based on the life cycle of an 

individual part. Then we calculate, if possible, the 

inverse function of f. This inverse function 1f   

enables us to set a predefined optimal value for the 

quality measure and to estimate the necessary process 

parameter ( û ) under consideration of the actual 

product and process variables of a specific part.  
 

1ˆ ( , , )ij iju f x y z  (2) 
 

If  f  is  no  bijective function,  Eq. (1) has to be solved 
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implicitly, for example by using Newton’s method. 

However, in this case, multiple solutions can exist. 

3.3 Data Pre-processing 

There are some data pre-processing needed, in order 

that we are able to apply regression models in the first 

step of our approach. If there are nominal variables in 

the set of the recorded product and process variables, 

they have to be replaced by binary attributes (dummy 

coding). A nominal variable with m levels has to be 

transformed in m-1 dummy variables with 0 and 1 as 

possible values.  

The second point, which has to be checked, is the 

collinearity of attributes, since it reduces the accuracy 

of the regression model. It is likely that some of the 

recorded product and process variables are correlated. 

For example, if the height of the part is measured after 

each process step, i.e. N times, then these N variables 

are presumably more or less correlated. Here not only 

correlation between two attributes has to be 

considered, also multicollinearity has to be detected. 

A way to assess multicollinearity is to compute 

variance inflation factors (VIF). The smallest possible 

value for VIF is 1, which indicates no collinearity. 

Attributes with VIF values that exceed 5 or 10 should 

be dropped from the regression analysis (James et al., 

2013).  

In some cases, it can be useful to create new 

features based on the recorded process and product 

variables to increase the accuracy of the applied 

machine learning model. Using domain knowledge of 

experienced workers of the considered manufacturing 

process can help in feature engineering as well as in 

the selection of relevant variables. 

3.4 Model and Variable Selection 

For modelling the relationship between product and 

process variables and the quality measure, regression 

models and artificial neural networks (ANN) are 

applied.  

ANN are a flexible and widely spread method for 

modelling complex relationships (Widrow et al., 

1994). A multi-layered architecture is built up from 

one or more hidden layers placed between an input 

and an output layer. Each layer consists of several 

highly interconnected processing units, called 

neurons, which sum weighted inputs and apply an 

activation function for generating the output. The 

weights are determined by training the neural network 

with the goal to minimize the error between the actual 

and predicted output values. Then a separate test set 

of data is used to estimate the network’s performance 

on new data. After all, the neural network serves as a 

function that maps input values (product and process 

variables) to output values (quality measures). 

Although ANN deliver good models for prediction, 

regression models are more transparent and easier to 

interpret when applying them in the practice of 

manufacturing companies. 

When we choose a regression model, we first have 

to answer the question, which variables from the set 

of the recorded product and process variables of the 

whole manufacturing process have the biggest 

influence on the quality measure and therefore should 

be used for modelling. From the point of view of the 

practitioners in the companies, it is desirable to get a 

model with a good accuracy, which only depends on 

a few variables. This configuration would reduce the 

cost and time for measuring and recording a huge 

amount of data from the production process. 

However, using too few variables will lead to bias and 

the inclusion of too many of them is likely to cause 

overfitting. A variety of methods for selecting 

variables is available (Miller, 2002; James et al., 

2013), such as 

 Best subset selection 

 Forward selection 

 Backward elimination 

Best subset selection fits a model to each combination 

of possible numbers of prediction variables. If there 

are p prediction variables, then 2 p  models are trained 

and the best of them is selected. Because of the 

computational effort, the application is only possible, 

if p is not too high. Otherwise, stepwise methods, like 

forward selection and backward elimination, are 

alternatives, which only explore a restricted set of 

combinations. Forward selection starts with the best 

model containing only one variable and increases the 

number of variables in each step by one. Conversely, 

backward selection starts with all possible prediction 

variables and reduces the number in each step by one. 

Regardless of the applied method for variable 

selection, performance measures for the comparison 

of different models are necessary in order to pick out 

the best model (Murtaugh, 2010). Different 

techniques for model evaluation are introduced in the 

next subsection 3.4.  

If linear regression is not adequate to generate 

models with good performance, the linearity 

assumption can be relaxed by introducing polynomial 

terms or generalized additive models. The selection 

of the applied function types can be motivated by 

known physical relationships of product and process 

variables.  
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3.5 Model Evaluation and Parameter 
Setting 

Different models based on different sets of prediction 

variables have to be compared in order to select the 

best one. Residual Sum of Squares (RSS) and R² are 

not suitable measures because they are based on the 

training data and are getting better, when the number 

of prediction variables increases. For model selection, 

the test error has to be estimated directly (e.g. by 

cross-validation) or indirectly (by adjusting the 

training error to account for the bias due to 

overfitting). In the first case, mean squared error 

(MSE) or root mean squared error (RMSE) can be 

applied. In the second case, the following criteria can 

be used: Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Cp value and 

Adjusted R² (James et al., 2013). 

One of these criteria or the cross-validation error 

can be applied for model selection in order to get a 

linear regression model f based on a selected set of 

process and product variables or a neural net with an 

optimal number of neurons in the hidden layer. In 

variable selection, it must be observed that the 

process parameter u, which has to be adjusted for 

each individual part, is included in the set of selected 

prediction variables. By calculating the inverse 

function 1f  of the linear function and inserting the 

optimal value of the quality measure z and the 

individual product and process variables of a part, an 

estimation û for the parameter setting is yield. 

4 CASE STUDY 

In this section, the developed approach is applied to a 

real-world production process in metal processing 

industry, which consists of three production steps. 

The whole workflow for parameter setting was 

implemented in R, an open-source software for 

statistical computing. In the next subsection, we 

describe the data, which was recorded in a 

manufacturing company. There exist two relevant 

quality measures of the finished part, so the approach 

is applied twice and the results are reported in the 

following sections. 

4.1 Experimental Data 

In an experiment, the data of 200 produced parts and 

the associated process data were recorded. Together 

with experts of the involved production processes, 

relevant variables have been selected. Table 1 shows 

the number of the analysed variables of each 

production step. According to Figure 1, the following 

notation is used: 

 ijx : j-th product variables of step i 

 ijy : j-th process variable of step i 

Product variables include, for instance, the 

dimensions of the part after each process step and its 

weight. Important process variables are temperatures, 

pressures and forces. 

Both product variables of step 3 are important 

quality measures, namely the height ( 1 31z x ) and 

the diameter ( 2 32z x ) of the part. One of the process 

variables of step 3 ( 31u y ) is the process parameter 

which should be determined individually for each part 

produced. With the exception of 23y , all product and 

process variables are numeric. Since 23y  is a nominal 

attribute with 5 different levels, it is replaced by four 

binary attributes ( 231 232 233 234, , ,y y y y ), such as 

proposed in section 3.2.  

Table 1: Number of Product and Process Variables. 

 

4.2 Results for Quality Measure 1 

Here the first quality measure, the height of the 

finished part 1 31z x , is used as response variable in 

a linear regression model. In this model, the second 

quality measure 32x  has to be excluded from the 

analysis, because it is not available in advance when 

using the regression model for prediction.  

The calculation of VIF, using the R package “car”, 

reveals that there is just one process variable with a 

VIF higher than 10 (  16VIF 12.16x  ). After the 

elimination of this variable, the VIF are calculated 

again with the result that the maximum value is 7.56. 

So this reduced data set is used for building the 

regression model. 

Since the number of variables is relatively small 

in our application, best subset selection can be applied 

for model selection. For this purpose we use the 

“regsubsets” function from the R-package “leaps”. 

Representative for the evaluation of the criteria 

mentioned in Section 3.4, Figure 3 displays the results 

of adjusted R². 

Variables Step 1 Step 2 Step 3 Total

Product Variables 6 6 2 14

Process Variables 4 4 2 10

Total 10 10 4 24
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Figure 3: Adjusted R squared for Linear Regression 

Models. 

Although the optimal number of variables varies 

from 5 to 13, all criteria reach good values with just a 

view number of variables. A closer look at adjusted 

R² reveals, that already 3 variables achieve a result 

that is close to the optimal value. 

Additionally, 10-fold cross-validation was 

applied to best subset selection, to get a better 

estimation of the test error. Figure 4 displays the 

comparison of test and training error depending on 

the number of prediction variables. This evaluation 

indicates also that 3 to 5 variables are a good choice 

for the regression model. 
 

 

Figure 4: Cross-validation of Linear Regression Models for 

Quality Measure 1. 

Table 2: Comparison of Linear Regression Models for 

Quality Measure 1. 

 
 

Now the linear regression model is trained on the 

whole dataset in order to obtain models with 3, 4, 5 

and 8 variables. Table 2 compares the values of 

adjusted R² and RMSE for these models and reveals 

that all of these models lead to similar good results. 

In all of the models the process parameter u , the 

product variable 21x  and the dummy coded process 

variable 231y  are selected. 

The formula obtained by linear regression for 
estimating quality measure 1 as a function of three 
prediction variables is:  
 

 1 31 21 231

21 231

ˆˆ , ,

18.477 0.772 0.289 0.012

z x f u x y

x u y

  

   
 (3) 

 

Therefore, we can see that the quality measure 

increases when 21x  increases and it decreases, when 

the process parameter u  increases or the binary 

variable 231y  has the value 1. The experts of the 

manufacturing company confirm these relationships, 

although for them it was surprising, that a linear 

function with only three variables can provide good 

estimates for this quality measure. Figure 5 provides 

a graphical comparison of actual and predicted values 

of the quality measure.  
 

 

Figure 5: Actual vs. Predicted Values for Quality Measure 

1 using Linear Regression. 

In order to be able to better assess the results, it is 

important to know that the optimal value for the 

quality measure is 27.29 and the accepted tolerance is 

0.06. Partly, there exist quite large deviations from 

the optimal value, which is the consequence of the 

rather large variations of possible parameters (in 

comparison to serial operation) in the experiment to 

get better insights in the relationships of product and 

process variables. However, the deviation of 

predicted values to actual values is less than the 

tolerance. 

Calculating the inverse function of f and inserting 

the optimal value for the quality measure in Eq. (3) 

yields a function for the process parameter: 
 

1

21 231

27.29

ˆ 30.495 2.671 0.042

z

u x y

 

   
 (4) 

 

This  equation  can be  applied to estimate the process 

Number of

Variables

3 4 5 8

Variables u

x21

y231

u

x21

y231

y32

u

x11

x21

y231

y32

u

x14

x21

y231, y232, y233, y234

y32

Adjusted R² 0.897 0.900 0.904 0.907

RMSE 0.00977 0.00958 0.00939 0.00914
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parameter u of step 3 individually for each part, just 

by inserting one product variable and one process 

variable of step 2. 

For the purpose of benchmarking the results from 

linear regression models, we also apply ANN for 

regression. This is done by the “neuralnet” function 

of the “neuralnet” package in R. We select a neural 

net with one hidden layer and apply 10-fold cross-

validation to get the optimal number of neurons in this 

hidden layer, using a range from 1 to 15. Figure 6 

shows the training and test error as a function of the 

number of neurons in the hidden layer, with a 

minimum test error for four neurons. The training 

errors of neural networks are comparable to the 

training errors for linear regression models (see 

Figure 4), but the test errors for ANN are significantly 

higher. One reason for this could be the small number 

of datasets for training the neural net. So already 

models with three neurons tend to overfit the training 

data and lead to relatively high test errors. 
 

 

Figure 6: Cross-validation of Neural Networks for Quality 

Measure 1. 

When the neural net with four neurons in the 

hidden layer is trained on the whole dataset, the 

following performance is obtained: 
 

² 0.967

0.00517

Adjusted R

RMSE




 (5) 

 

These values outperform the good results from linear 

regression (see Table 2), however it is important to 

note that the performance of the neural net on new 

data is considerably worse than for linear regression. 

Further drawbacks of neural nets in this application is 

the number of variables applied (and the associated 

measuring effort) and the impossibility to calculate an 

inverse function, which is required for Eq. (2). 

4.3 Results for Quality Measure 2 

Now the same approach is applied to quality measure 

2, the diameter of the finished part. Again the reduced 

dataset without the product variable 16x , due to its 

multicollinearity detected by calculating VIF, is used. 

Only the response variable 31x  is replaced by 32x . 

However, the first results are not very promising. 

Training a linear regression model on the whole 

dataset using all variables delivers adjusted R² of only 

0.07. A neural net can increase this value at 0.2, which 

is also too less for practical applications. At this point, 

feature engineering is necessary to improve the 

results. A detailed analysis revealed that it is 

favourable to replace the diameter in step 3 as 

response variable by the change of the diameter from 

step 2 to step 3: 2 2 32 22z d x x   . Additionally we 

introduced the change of the diameter from step 1 to 

step 2 as a new feature 1 22 12d x x   and excluded 

the diameter 22x from the analysis for the sake of 

collinearity. 

First, best subset selection for linear regression 

models in combination with a 10-fold cross-

validation is applied for model selection (Figure 7). 

Also for the change of the diameter, a small number 

of variables (2 – 5) is sufficient for a good predictive 

model. In Table 3 linear models, which are trained on 

the full data set with 2, 3, 4 and 5 variables, are 

compared. Adjusted R² is nearly equally excellent for 

all these models. For parameter setting, the first 

model is not suitable, because the process parameter 

u is not used for prediction. Selection of three 

variables for prediction of the change in diameter 

yields the function 
 

 2 2 12 1

12 1

ˆˆ , ,

45.982 1.054 0.009 0.972

z d f u x d

x u d

  

   
 (6) 

 

 

Figure 7: Cross-validation of Linear Regression Models for 

Change in Diameter. 

Table 3: Comparison of Models for Change in Diameter. 

 

Number of

Variables

2 3 4 5

Variables

d1

x12

u

d1

x12

u

d1

x12

x13

u

d1

x12

x13

y32

Adjusted R² 0.974 0.975 0.976 0.976

RMSE 0.00304 0.00296 0.00294 0.00290
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Figure 8 shows the comparison of actual and 

predicted values for the change in diameter. The 

accepted tolerance for this diameter is 0.012 and the 

optimal value is 44.043, which can be applied for 

calculating estimates of the necessary process 

parameter for individual parts: 
 

22 2

12 1 22

44.043

ˆ 215.44 117.11 108 111.11

x d

u x d x

  

    
 (7) 

Also for this quality measure we train a neural net 

with one hidden layer and select the optimal number 

of neurons with a 10-fold cross-validation. Here three 

neurons lead to the minimum test error in the studied 

range from 1 to 15 (see Figur). The performance of 

the neural net, trained on the whole data set, can be 

assessed by the following measures: 

² 0.976

0.00275

Adjusted R

RMSE




 (8) 

 

Adjusted R² is roughly equal than the value for linear 

regression models and RMSE is slightly better (see 

Table 3). Taking into account the higher test error for 

ANN (Figur) and the drawbacks already discussed for 

quality measure 1, also for quality measure 2 the 

linear regression model should be preferred. 

 

Figure 8: Actual vs. Predicted Values for Change in 

Diameter. 

 

Figure 9: Cross-validation of Neural Networks for Change 

in Diameter. 

5 CONCLUSIONS 

In this article, we present an approach for parameter 

setting in manufacturing processes. The parameter 

adjustment is adaptive to the properties and history of 

each individual part. In the first step the relationship 

between multiple input variables and a relevant 

quality measure is investigated. Then this relationship 

is used to calculate estimates for a specific process 

parameter in order to get optimal quality measures. 

The results of the case study, based on real-world 

manufacturing data, show that even simple linear 

regression models with a few product and process 

variables provide good estimates for quality measures 

and can be applied for parameter setting. We also 

train neural nets to get a benchmark for the linear 

regression models. The results reveal that neural nets 

outperform linear regression on the training data, but 

application on the test data shows a significantly 

higher test error. Recording more data for training and 

testing could be favourable for neural networks. 

In further research, we want to extend the 

approach to multiple quality measures, which are 

weighted in an objective function. In order to 

investigate the scalability of the presented approach, 

we plan to apply it in a long-term study on a larger 

data set of the considered real-world use case. To 

evaluate the generality of our approach we intend the 

application in other manufacturing processes as well. 
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