are performed online on embedded hardware, meaning
that the robot is able to work in unknown environments.
It can support autonomously, for example, in search
and rescue mission, disaster relief work, or exploration
tasks.
REFERENCES
Anai, T., Sasaki, T., Osaragi, K., Yamada, M., Otomo, F.,
and Otani, H. (2012). Automatic exterior orientation
procedure for low-cost uav photogrammetry using vi-
deo image tracking technique and gps information. Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
˚
Astr
¨
om, K. J. and H
¨
agglund, T. (2006). Advanced PID
control. ISA-The Instrumentation, Systems and Auto-
mation Society.
Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M.,
Mueller, M. W., Willmann, J. S., Gramazio, F., Kohler,
M., and D’Andrea, R. (2014). The flight assembled
architecture installation: Cooperative construction with
flying machines. IEEE Control Systems, 34(4):46–64.
Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In European conference
on computer vision, pages 404–417. Springer.
Demonceaux, C., Vasseur, P., and Pegard, C. (2006). Om-
nidirectional vision on uav for attitude computation.
In IEEE International Conference on Robotics and
Automation (ICRA), pages 2842–2847.
Eberli, D., Scaramuzza, D., Weiss, S., and Siegwart, R.
(2011). Vision based position control for mavs using
one single circular landmark. Journal of Intelligent &
Robotic Systems, 61(1–4):495–512.
El-gayar, M., Soliman, H., and Meky, N. (2013). A com-
parative study of image low level feature extraction
algorithms. Egyptian Informatics Journal, 14(2):175–
181.
Engel, J., Sturm, J., and Cremers, D. (2014). Scale-aware
navigation of a low-cost quadrocopter with a monocu-
lar camera. Robotics and Autonomous Systems (RAS),
62(11):1646–1656.
Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo:
Fast semi-direct monocular visual odometry. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 15–22.
Gaspar, J., Grossmann, E., and Santos-Victor, J. (2001). Inte-
ractive reconstruction from an omnidirectional image.
In 9th International Symposium on Intelligent Robotic
Systems (SIRS01). Citeseer.
Haggag, H., Hossny, M., Filippidis, D., Creighton, D., Na-
havandi, S., and Puri, V. (2013). Measuring depth
accuracy in rgbd cameras. In 7th International Confe-
rence on Signal Processing and Communication Sys-
tems (ICSPCS), pages 1–7.
Heinly, J., Dunn, E., and Frahm, J.-M. (2012). Compara-
tive evaluation of binary features. In Fitzgibbon, A.,
Lazebnik, S., Perona, P., Sato, Y., and Schmid, C., edi-
tors, 12th European Conference on Computer Vision
(ECCV), pages 759–773, Berlin. Springer.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Journal of basic Engineering,
82(1):35–45.
Lange, S., S
¨
underhauf, N., Neubert, P., Drews, S., and Prot-
zel, P. (2012). Autonomous corridor flight of a uav
using a low-cost and light-weight rgb-d camera. In
R
¨
uckert, U., Joaquin, S., and Felix, W., editors, Ad-
vances in Autonomous Mini Robots: Proceedings of
the 6-th AMiRE Symposium, pages 183–192, Berlin.
Springer.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In The proceedings of the seventh
IEEE international conference on Computer vision,
volume 2, pages 1150–1157. IEEE.
Mori, T. and Scherer, S. (2013). First results in detecting and
avoiding frontal obstacles from a monocular camera for
micro unmanned aerial vehicles. In IEEE International
Conference on Robotics and Automation (ICRA), pages
1750–1757.
Olivares-M
´
endez, M. A., Mondrag
´
on, I. F., Campoy, P., and
Mart
´
ınez, C. (2010). Fuzzy controller for uav-landing
task using 3d-position visual estimation. In Fuzzy
Systems (FUZZ), 2010 IEEE International Conference
on, pages 1–8.
Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). Ros: an
open-source robot operating system. In ICRA Works-
hop on Open Source Software.
Remes, B., Hensen, D., Van Tienen, F., De Wagter, C.,
Van der Horst, E., and De Croon, G. (2013). Paparazzi:
how to make a swarm of parrot ar drones fly autono-
mously based on gps. In IMAV 2013: Proceedings of
the International Micro Air Vehicle Conference and
Flight Competition, Toulouse, France, 17-20 Septem-
ber 2013.
Rodr
´
ıguez-Canosa, G. R., Thomas, S., del Cerro, J., Bar-
rientos, A., and MacDonald, B. (2012). A real-time
method to detect and track moving objects (datmo)
from unmanned aerial vehicles (uavs) using a single
camera. Remote Sensing, 4(4):1090–1111.
Rosten, E. and Drummond, T. (2006). Machine learning for
high-speed corner detection. In Leonardis, A., Bischof,
H., and Pinz, A., editors, 9th European Conference
on Computer Vision (ECCV), pages 430–443, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011).
Orb: An efficient alternative to sift or surf. In Internati-
onal conference on computer vision, pages 2564–2571.
IEEE.
Sch
¨
ollig, A., Augugliaro, F., and D’Andrea, R. (2012). A
platform for dance performances with multiple quadro-
copters. Improving Tracking Performance by Learning
from Past Data, page 147.
Shi, J. and Tomasi, C. (1994). Good features to track. In
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pages 593–600. IEEE.
Teuli
´
ere, C., Eck, L., Marchand, E., and Gu
´
enard, N. (2010).
3d model-based tracking for uav position control. In
IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS), pages 1084–1089.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
506