machine learning methods for the task and applying
the method on other objects.
REFERENCES
Andriluka, M., Roth, S., and Schiele, B. (2010). Monocular
3d pose estimation and tracking by detection. In 2010
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pages 623–630.
Benenson, R., Mathias, M., Timofte, R., and Van Gool, L.
(2012). Fast stixels estimation for fast pedestrian de-
tection. In ECC V, CVVT workshop.
Benenson, R., Mathias, M., Tuytelaars, T., and Gool, L. V.
(2013). Seeking the strongest rigid detector. In 2013
IEEE Conference on Computer Vision and Pattern Re-
cognition, pages 3666–3673.
Carr, P., Sheikh, Y., and Matthews, I. (2012). Monocular ob-
ject detection using 3d geometric primitives. In Pro-
ceedings of the 12th European Conference on Compu-
ter Vision - Volume Part I, ECCV’12, pages 864–878,
Berlin, Heidelberg. S pringer-Verlag.
Cheng, M. M., Z hang, Z., Lin, W. Y., and Torr, P. (2014).
Bing: Binarized normed gradients for objectness esti-
mation at 300fps. In 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3286–
3293.
Choy, C. B. , Stark, M., Corbett-Davies, S., and Savarese, S.
(2015). Enriching object detection with 2d-3d regis-
tration and continuous viewpoint estimation. In 2015
IEEE Conference on Computer Vision and Pattern Re-
cognition (CVPR), pages 2512–2520.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. I n 2005 IEEE Compu-
ter Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05), volume 1, pages 886–
893 vol. 1.
Doll´ar, P., Wojek, C., Schiele, B., and Perona, P. (2009).
Pedestrian detection: A benchmark. In CVPR.
Doll´ar, P., Wojek, C., Schiele, B., and Perona, P. (2012).
Pedestrian detection: An evaluation of the state of the
art. PAMI, 34.
Doll´ar, P., Appel, R., Belongie, S., and Perona, P. (2014).
Fast feature pyramids f or object detection. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 36(8):1532–1545.
Freeman, H. and Shapira, R. (1975). Determining the
minimum-area encasing rectangle for an arbitrary clo-
sed curve. Commun. ACM, 18(7):409–413.
Nilsson, M. (2014). Elastic net regularized logistic regres-
sion using cubic majorization. In Proceedings of the
IEEE International Conference on Pattern Recogni-
tion (ICPR), pages 3446–3451.
Nilsson, M. (2016). Sparse coding with unity range co-
des and label consistent discriminative dictionary lear-
ning. In Proceedings of the IEEE International Con-
ference on Pattern Recognition (ICPR).
Nilsson, M. and Ard¨o, H. (2014). In search of a car uti-
lizing a 3d model with context for object detection.
In The International Conference on Computer Vision
Theory and Applications (VISAPP), volume 2, pages
419–424.
Parzen, E. (1962). On estimation of a probability density
function and mode. Ann. Math. Statist., 33(3):1065–
1076.
Ren, X. and Ramanan, D. (2013). Histograms of sparse
codes for object detection. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition, pages
3246–3253.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Sudowe, P. and Leibe, B. (2011). Efficient Use of Geome-
tric Constraints for Sliding-Window Object Detection
in Video. In International Conference on Computer
Vision Systems (ICVS’11).
Toussaint, G. ( 1983). Solving geometric problems with the
rotating calipers. I n Proc. IEEE MELECON ’83, pa-
ges 10—02.
Tsai, R. Y. (1987). A versatile camera calibration technique
for high-accuracy 3d machine vision metrology using
off-the-shelf TV cameras and lenses. IEEE J. Robotics
and Automation, 3(4):323–344.
Tukey, J. (1977). Exploratory Data Analysis. Behavioral
Science: Quantitative Methods. Addison-Wesley, Re-
ading, Mass.
van de Sande, K. E. A., Uijlings, J., Gevers, T., and Smeul-
ders, A. (2011). Segmentation as Selective S earch for
Object Recognition. In ICCV.
Xiang, Y., Mottaghi, R., and Savarese, S. (2014). Beyond
pascal: A benchmark for 3d object detection in the
wild. In IEE E Winter Conference on Applications of
Computer Vision (WACV).
Zhang, L., Lin, L., Liang, X., and He, K. (2016a). Is Faster
R-CNN Doing Well for Pedestrian Detection?, pages
443–457. Springer International Publishing, Cham.
Zhang, S., B enenson, R., Omran, M., Hosang, J., and
Schiele, B. (2016b). How far are we from solving
pedestrian detection? In CVPR.
Zitnick, C. L. and Doll´ar, P. (2014). Edge Boxes: Locating
Object Proposals from Edges, pages 391–405. Sprin-
ger International Publishing, Cham.