REFERENCES
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1988). A
learning algorithm for boltzmann machines. In Waltz,
D. and Feldman, J. A., editors, Connectionist Models
and Their Implications: Readings from Cognitive Sci-
ence, pages 285–307. Ablex Publishing Corp., Nor-
wood, NJ, USA.
Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theor. Comput. Sci., 126(2):183–235.
Aman, B. and Ciobanu, G. (2016). Modelling and verifica-
tion of weighted spiking neural systems. Theoretical
Computer Science, 623:92 – 102.
Bengtsson, J., Larsen, K. G., Larsson, F., Pettersson, P., and
Yi, W. (1995). UPPAAL — a Tool Suite for Automatic
Verification of Real–Time Systems. In Proceedings of
Workshop on Verification and Control of Hybrid Sys-
tems III, number 1066 in Lecture Notes in Computer
Science, pages 232–243. Springer–Verlag.
Bohte, S. M., Poutr
´
e, H. A. L., Kok, J. N., La, H. A., Joost,
P., and Kok, N. (2002). Error-backpropagation in tem-
porally encoded networks of spiking neurons. Neuro-
computing, 48:17–37.
Ciatto, G., De Maria, E., and Di Giusto, C. Additional ma-
terial. https://github.com/gciatto/snn as ta.
Ciatto, G., De Maria, E., and Di Giusto, C. (2017). Model-
ing Third Generation Neural Networks as Timed Au-
tomata and verifying their behavior through Tempo-
ral Logic. Research report, Universit
´
e C
ˆ
ote d’Azur,
CNRS, I3S, France.
Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. (1999).
Model checking. MIT Press, Cambridge, MA, USA.
Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4):303–314.
De Maria, E., Muzy, A., Gaff
´
e, D., Ressouche, A., and
Grammont, F. (2016). Verification of Temporal Prop-
erties of Neuronal Archetypes Using Synchronous
Models. In Fifth International Workshop on Hybrid
Systems Biology, Grenoble, France.
Freund, Y. and Schapire, R. E. (1999). Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37(3):277–296.
Gerstner, W. and Kistler, W. (2002). Spiking Neuron Mod-
els: An Introduction. Cambridge University Press,
New York, NY, USA.
Gruber, H., Holzer, M., Kiehn, A., and K
¨
onig, B. (2005).
On timed automata with discrete time - structural and
language theoretical characterization. In Develop-
ments in Language Theory, 9th International Confer-
ence, DLT 2005, Palermo, Italy, July 4-8, 2005, Pro-
ceedings, pages 272–283.
Gr
¨
uning, A. and Bohte, S. (2014). Spiking neural networks:
Principles and challenges.
Hebb, D. O. (1949). The Organization of Behavior. John
Wiley.
Hopfield, J. J. (1988). Neural networks and physical sys-
tems with emergent collective computational abilities.
In Anderson, J. A. and Rosenfeld, E., editors, Neuro-
computing: Foundations of Research, pages 457–464.
MIT Press, Cambridge, MA, USA.
Hughes, G. E. and Cresswell, M. J. (1968). An Introduction
to Modal Logic. Methuen.
Ijspeert, A. J. (2008). Central pattern generators for loco-
motion control in animals and robots: A review. Neu-
ral Networks, 21(4):642–653.
Izhikevich, E. M. (2004). Which model to use for cortical
spiking neurons? IEEE Transactions on Neural Net-
works, 15(5):1063–1070.
Lapicque, L. (1907). Recherches quantitatives sur
l’excitation electrique des nerfs traitee comme une po-
larization. J Physiol Pathol Gen, 9:620–635.
Maass, W. (1997). Networks of spiking neurons: The third
generation of neural network models. Neural Net-
works, 10(9):1659 – 1671.
Matsuoka, K. (1987). Mechanisms of frequency and pattern
control in the neural rhythm generators. Biological
cybernetics, 56(5-6):345–353.
McCulloch, W. S. and Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115–133.
Paugam-Moisy, H. and Bohte, S. (2012). Computing with
Spiking Neuron Networks, pages 335–376. Springer
Berlin Heidelberg, Berlin, Heidelberg.
Recce, M. (1999). Encoding information in neuronal activ-
ity. In Maass, W. and Bishop, C. M., editors, Pulsed
Neural Networks, pages 111–131. MIT Press, Cam-
bridge, MA, USA.
Richard, A. (2010). Negative circuits and sustained oscilla-
tions in asynchronous automata networks. Advances
in Applied Mathematics, 44(4):378–392.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988).
Learning representations by back-propagating errors.
In Anderson, J. A. and Rosenfeld, E., editors, Neuro-
computing: Foundations of Research, pages 696–699.
MIT Press, Cambridge, MA, USA.
Sj
¨
ostr
¨
om, J. and Gerstner, W. (2010). Spike-timing depen-
dent plasticity. Scholarpedia, 5(2).
APPENDIX
A Timed Automata Example
In Figure 4 we consider the network of timed au-
tomata TA
1
and TA
2
with broadcast communications,
and we give a possible run. TA
1
and TA
2
start in the
l
1
and l
3
locations, respectively, so the initial state is
[(l
1
, l
3
); x = 0]. A timed transition produces a de-
lay of 1 time unit, making the system move to state
[(l
1
, l
3
); x = 1]. A broadcast transition is now en-
abled, making the system move to state [(l
2
, l
3
); x =
0], broadcasting over channel a and resetting the x
clock. Two successive timed transitions (0.5 time
BIOINFORMATICS 2018 - 9th International Conference on Bioinformatics Models, Methods and Algorithms
26