Chen, Y. and Pock, T. (2016). Trainable nonlinear reaction
diffusion: A flexible framework for fast and effective
image restoration. IEEE Transactions on Pattern Ana-
lysis and Machine Intelligence.
Comaniciu, D. and Meer, P. (2002). Mean shift: a ro-
bust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 24(5):603–619.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages
248–255. IEEE.
Dong, C., Loy, C. C., He, K., and Tang, X. (2014). Lear-
ning a Deep Convolutional Network for Image Super-
Resolution, pages 184–199. Springer International
Publishing, Cham.
Dong, C., Loy, C. C., He, K., and Tang, X. (2016). Image
super-resolution using deep convolutional networks.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(2):295–307.
Fattal, R. (2007). Image upsampling via imposed edge sta-
tistics. ACM Trans. Graph., 26(3).
Fortunato, H. E. and Oliveira, M. M. (2014). Fast high-
quality non-blind deconvolution using sparse adaptive
priors. The Visual Computer, 30(6-8):661–671.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N. D.,
and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems 27, pages 2672–
2680. Curran Associates, Inc.
Gu, S., Zuo, W., Xie, Q., Meng, D., Feng, X., and Zhang, L.
(2015). Convolutional sparse coding for image super-
resolution. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 1823–1831.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature em-
bedding. In Proceedings of the 22nd ACM internatio-
nal conference on Multimedia, pages 675–678. ACM.
Joshi, N., Zitnick, C. L., Szeliski, R., and Kriegman, D. J.
(2009). Image deblurring and denoising using color
priors. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 1550–
1557.
Kim, J., Kwon Lee, J., and Mu Lee, K. (2016). Accurate
image super-resolution using very deep convolutional
networks. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR).
Kingma, D. and Ba, J. (2014). Adam: A method for sto-
chastic optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P. and Welling, M. (2014). Auto-encoding va-
riational bayes. In ICLR 2014.
Kodak (2013). Kodak lossless true color image suite.
http://r0k.us/graphics/kodak/. Accessed: 2013-01-27.
Krishnan, D. and Fergus, R. (2009). Fast image deconvo-
lution using hyper-laplacian priors. In Advances in
Neural Information Processing Systems, pages 1033–
1041.
Levin, A., Fergus, R., Durand, F., and Freeman, W. T.
(2007). Image and depth from a conventional camera
with a coded aperture. ACM transactions on graphics
(TOG), 26(3):70.
Levin, A., Nadler, B., Durand, F., and Freeman, W. T.
(2012). Patch Complexity, Finite Pixel Correlations
and Optimal Denoising, pages 73–86. Springer Ber-
lin Heidelberg, Berlin, Heidelberg.
Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., and Huang,
T. S. (2016). Robust single image super-resolution via
deep networks with sparse prior. IEEE Transactions
on Image Processing, 25(7):3194–3207.
Mao, X.-J., Shen, C., and Yang, Y.-B. (2016). Image resto-
ration using very deep convolutional encoder-decoder
networks with symmetric skip connections. In Proc.
Neural Information Processing Systems.
Nguyen, A., Yosinski, J., Bengio, Y., Dosovitskiy, A., and
Clune, J. (2016). Plug & play generative networks:
Conditional iterative generation of images in latent
space. arXiv preprint arXiv:1612.00005.
Perrone, D. and Favaro, P. (2014). Total variation blind de-
convolution: The devil is in the details. In 2014 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 2909–2916.
Schmidt, U., Jancsary, J., Nowozin, S., Roth, S., and Rot-
her, C. (2016a). Cascades of regression tree fields for
image restoration. IEEE Transactions on Pattern Ana-
lysis and Machine Intelligence, 38(4):677–689.
Schmidt, U., Jancsary, J., Nowozin, S., Roth, S., and Rot-
her, C. (2016b). Cascades of regression tree fields for
image restoration. IEEE transactions on pattern ana-
lysis and machine intelligence, 38(4):677–689.
Schuler, C. J., Burger, H. C., Harmeling, S., and Schlkopf,
B. (2013). A machine learning approach for non-blind
image deconvolution. In Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pa-
ges 1067–1074.
Shan, Q., Jia, J., and Agarwala, A. (2008). High-quality
motion deblurring from a single image. In ACM Tran-
sactions on Graphics (TOG), volume 27, page 73.
ACM.
Tappen, M. F., Russell, B. C., and Freeman, W. T.
(2003). Exploiting the sparse derivative prior for
super-resolution and image demosaicing. In In IEEE
Workshop on Statistical and Computational Theories
of Vision.
Venkatakrishnan, S. V., Bouman, C. A., and Wohlberg, B.
(2013). Plug-and-play priors for model based recon-
struction. In GlobalSIP, pages 945–948. IEEE.
Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-
A. (2008). Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning,
ICML ’08, pages 1096–1103, New York, NY, USA.
ACM.
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and
Manzagol, P.-A. (2010). Stacked denoising autoen-
coders: Learning useful representations in a deep net-
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
42