Courant, R., Friedrichs, K. O., and Lewy, H. (1967).
On the partial difference equations of mathematical
physics. IBM Journal of Research and Development,
11(2):215–234.
Edelsbrunner, H. and Shah, N. R. (1992). Incremental topo-
logical flipping works for regular triangulations. In
SCG ’92: Proceedings of the eighth annual sympo-
sium on Computational geometry, pages 43–52, New
York, NY, USA. ACM.
Enright, D., Losasso, F., and Fedkiw, R. (2004). A fast and
accurate semi-lagrangian particle level set method.
Computers and Structures, 83(6–7):479–490.
Franke, R. and Nielson, G. M. (1991). Scattered data in-
terpolation: A tutorial and survey. In Hagen, H.
and Roller, D., editors, Geometric Modeling: Meth-
ods and Applications, pages 131–160. Springer, New
York, NY, USA.
Gross, M. and Pfister, H. (2007). Point-Based Graph-
ics. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.
Kolluri, R. (2008). Provably good moving least squares.
ACM Trans. Algorithms, 4(2):1–25.
Lawrence, J. D. (1972). A Catalog of Special Plane Curves.
Dover Publications.
Lefohn, A. E., Kniss, J. M., Hansen, C. D., and Whitaker,
R. T. (2004). A streaming narrow-band algorithm: In-
teractive computation and visualization of level sets.
IEEE Transactions on Visualization and Computer
Graphics, 10(4):422–433.
Molchanov, V., Rosenthal, P., and Linsen, L. (2010). Non-
iterative second-order approximation of signed dis-
tance function for any isosurface representation. Com-
puter Graphics Forum, 29(3):1211–1220.
Nielsen, M. B. and Museth, K. (2006). Dynamic tubular
grid: An efficient data structure and algorithms for
high resolution level sets. J. Sci. Comput., 26:261–
299.
Osher, S. and Fedkiw, R. (2003). Level set methods and
dynamic implicit surfaces. Springer, New York, NY,
USA.
Osher, S. and Sethian, J. A. (1988). Fronts propagating
with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. Journal of Computa-
tional Physics, 79(1):12–49.
Park, S. W., Linsen, L., Kreylos, O., Owens, J. D., and
Hamann, B. (2006). Discrete Sibson interpolation.
IEEE Transactions on Visualization and Computer
Graphics, 12(2):243–253.
Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang,
M. (1999). A PDE-based fast local level set method.
Journal of Computational Physics, 155(2):410–438.
Rosenthal, P. and Linsen, L. (2006). Direct isosurface ex-
traction from scattered volume data. In Santos, B. S.,
Ertl, T., and Joy, K. I., editors, EuroVis06: Proceed-
ings of the Eurographics/IEEE-VGTC Symposium on
Visualization, pages 99–106, Aire-la-Ville, Switzer-
land. Eurographics Association.
Rosenthal, P. and Linsen, L. (2008a). Image-space point
cloud rendering. In Proceedings of Computer Graph-
ics International, pages 136–143.
Rosenthal, P. and Linsen, L. (2008b). Smooth surface ex-
traction from unstructured point-based volume data
using PDEs. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1531–1546.
Rosenthal, P., Molchanov, V., and Linsen, L. (2010). A nar-
row band level set method for surface extraction from
unstructured point-based volume data. In Skala, V.,
editor, Proceedings of WSCG, The 18th International
Conference on Computer Graphics, Visualization and
Computer Vision, pages 73–80, Plzen, Czech Repub-
lic. UNION Agency – Science Press.
Schwartz, P. and Colella, P. (2008). A second-order accurate
method for solving the eikonal equation. Proceedings
in Applied Mathematics and Mechanics, 7(1).
Sethian, J. A. (1999). Level Set Methods and Fast Marching
Methods. Cambridge University Press, Cambridge,
UK, 2nd edition.
Tsai, Y.-h. R. (2002). Rapid and accurate computation of
the distance function using grids. Journal of Compu-
tational Physics, 178(1):175–195.
van der Laan, W. J., Jalba, A. C., and Roerdink, J. B. T. M.
(2011). A memory and computation efficient sparse
level-set method. Journal of Scientific Computing,
46(2):243–264.
Vuc¸ini, E., M¨oller, T., and Gr¨oller, M. E. (2009). On visu-
alization and reconstruction from non-uniform point
sets using b-splines. Computer Graphics Forum,
28(3):1007–1014.