quitous Computing, UbiComp ’15, pages 493–504,
New York, NY, USA. ACM.
Kappeler-Setz, C., Arnrich, B., Schumm, J., La Marca, R.,
Tr
¨
oster, G., and Ehlert, U. (2010). Discriminating
stress from cognitive load using a wearable eda de-
vice. IEEE Transactions on Information Technology
in Biomedicine, 14(2):410–417.
Karasek, R. and Theorell, T. (1992). Healthy Work: Stress,
Productivity, and the Reconstruction of Working Life.
Basic Books.
Kohonen, T., Schroeder, M. R., and Huang, T. S. (2001).
Self-Organizing Maps. Springer-Verlag New York,
Inc, 3rd edition.
Kusserow, M., Amft, O., and Tr
¨
oster, G. (2013). Monitoring
stress arousal in the wild. IEEE Pervasive Computing
Magazine, 12(2):28–37.
Liao, L. and Carey, M. (2015). Laboratory-induced men-
tal stress, cardiovascular response and psychological
characteristics. Reviews in Cardiovascular Medicine,
16(1):28–35.
McCorry, L. K. (2007). Physiology of the autonomic ner-
vous system. American Journal of Pharmaceutical
Education, 71.
Medina, L. (2009). Identification of stress states from ecg
signals using unsupervised learning methods. In Por-
tuguese Conf. on Pattern Recognition - RecPad.
Melillo, P., Bracale, M., and Pecchia, L. (2011). Nonli-
near heart rate variability features for real-life stress
detection. case study: students under stress due to
university examination. BioMedical Engineering On-
Line, 10(1):96.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Du-
chesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Rousseeuw, P. (1987). Silhouettes: A graphical aid to the in-
terpretation and validation of cluster analysis. J. Com-
put. Appl. Math., 20(1):53–65.
Siegrist, J. (2010). Effort-reward imbalance at work and
cardiovascular diseases. International Journal of
Occupational Medicine and Environmental Health,
23(3):279–285.
Smets, E., Casale, P., Großekath
¨
ofer, U., Lamichhane,
B., De Raedt, W., Bogaerts, K., Van Diest, I., and
Van Hoof, C. (2016). Comparison of Machine Le-
arning Techniques for Psychophysiological Stress De-
tection, pages 13–22. Springer International Publis-
hing.
Taelman, J., Vandeput, S., Spaepen, A., and Van Huffel, S.
(2009). Influence of Mental Stress on Heart Rate and
Heart Rate Variability, pages 1366–1369. Springer
Berlin Heidelberg, Berlin, Heidelberg.
Task Force of the European Society of Cardiology the
North American Society of Pacing Electrophysiology
(1996). Heart rate variability standards of measure-
ment, physiological interpretation, and clinical use.
Van der Elst, W., Van Boxtel, M., Van Breukelen, G., and
Jolles, J. (2006). The stroop color-word test. Asses-
sment, 13(1):62–79. PMID: 16443719.
Vesanto, J. and Alhoniemi, E. (2000). Clustering of the self-
organizing map. IEEE Transactions on neural net-
works, 11(3):586–600.
Vrijkotte, T., Van Doornen, L., and De Geus, E. (2000). Ef-
fects of work stress on ambulatory blood pressure, he-
art rate, and heart rate variability. Hypertension, page
886.
Wijsman, J., Grundlehner, B., Liu, H., Hermens, H., and
Penders, J. (2011). Towards mental stress detection
using wearable physiological sensors. In 33rd An-
nual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, EMBC 2011, pa-
ges 1798–1801. IEEE Engineering in Medicine & Bi-
ology Society.
Zhai, J., Barreto, A., and Chin, C. (2005). Realization
of stress detection using psychophysiological signals
for improvement of human-computer interactions. In
Proceedings. IEEE SoutheastCon, 2005., pages 415–
420.
Unsupervised Learning for Mental Stress Detection - Exploration of Self-organizing Maps
35