Dobrev, P., Long, T. V., and Linsen, L. (2011). A cluster
hierarchy-based volume rendering approach for inter-
active visual exploration of multi-variate volume data.
In Proceedings of 16th International Workshop on Vi-
sion, Modeling and Visualization (VMV 2011), pages
137–144. Eurographics Association.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
the second international conference on knowledge dis-
covery and data mining, page 226231.
Han, J. and Kamber, M. (2006). Data Mining: Concepts
and Techniques. Morgan Kaufmann Publishers.
Hartigan, J. A. (1975). Clustering Algorithms. Wiley.
Hartigan, J. A. (1985). Statistical theory in clustering. Jour-
nal of Classification, 2:62–76.
Heinrich, J., Bachthaler, S., and Weiskopf, D. (2011). Pro-
gressive splatting of continuous scatterplots and par-
allel coordinates. Comput. Graph. Forum, 30(3):653–
662.
Hinneburg, A. and Keim, D. (1998). An efficient approach
to clustering in large multimedia databases with noise.
In Proceedings of the fourth international conference
on knowledge discovery and data mining, page 5865.
Hinneburg, A., Keim, D. A., and Wawryniuk, M. (1999).
Hd-eye: Visual mining of high-dimensional data.
IEEE Computer Graphics and Applications, pages
22–31.
Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clus-
tering Data. Prentice Hall.
J
¨
anicke, H., Wiebel, A., Scheuermann, G., and Kollmann,
W. (2007). Multifield visualization using local statis-
tical complexity. IEEE Transaction on Visualization
and Computer Graphics, 13(6):1384–1391.
Karypis, G., Han, E. H., and Kumar, V. (1999). Chameleon:
Hierarchical clustering using dynamic modeling.
Computer, 32(8):68–75.
Lehmann, D. J. and Theisel, H. (2010). Discontinuities in
continuous scatter plots. IEEE Transactions on Visu-
alization and Computer Graphics, 16:1291–1300.
Lehmann, D. J. and Theisel, H. (2011). Features in continu-
ous parallel coordinates. Visualization and Computer
Graphics, IEEE Transactions on, 17(12):1912 –1921.
Linsen, L., Long, T. V., and Rosenthal, P. (2009). Link-
ing multi-dimensional feature space cluster visual-
ization to surface extraction from multi-field volume
data. IEEE Computer Graphics and Applications,
29(3):85–89. linsenlongrosenthalvcgl.
Linsen, L., Long, T. V., Rosenthal, P., and Rosswog, S.
(2008). Surface extraction from multi-field particle
volume data using multi-dimensional cluster visual-
ization. IEEE Transactions on Visualization and Com-
puter Graphics, 14(6):1483–1490. linsenlongrosen-
thalrosswogvcglsmoothvis.
Long, T. V. (2009). Visualizing High-density Clusters in
Multidimensional Data. PhD thesis, School of Engi-
neering and Science, Jacobs University, Bremen, Ger-
many.
Maciejewski, R., Woo, I., Chen, W., and Ebert, D. (2009).
Structuring feature space: A non-parametric method
for volumetric transfer function generation. IEEE
Transactions on Visualization and Computer Graph-
ics, 15:1473–1480.
Oeltze, S., Doleisch, H., Hauser, H., Muigg, P., and Preim,
B. (2007). Interactive visual analysis of perfusion
data. IEEE Transaction on Visualization and Com-
puter Graphics, 13(6):1392–1399.
Sauber, N., Theisel, H., and Seidel, H.-P. (2006). Multifield-
graphs: An approach to visualizing correlations in
multifield scalar data. IEEE Transactions on Visual-
ization and Computer Graphics, 12(5):917–924.
Stuetzle, W. (2003). Estimating the cluster tree of a density
by analyzing the minimal spanning tree of a sample.
Journal of Classification, 20:25–47.
Stuetzle, W. and Nugent, R. (2007). A generalized single
linkage method for estimating the cluster tree of a den-
sity. Technical Report.
Whalen, D. and Norman, M. L. (2008). Com-
petition data set and description. 2008
IEEE Visualization Design Contest,
http://vis.computer.org/VisWeek2008/vis/contests.html.
Wong, A. and Lane, T. (1983). A kth nearest neighbor clus-
tering procedure. Journal of the Royal Statistical So-
ciety, Series B, 45:362–368.
Woodring, J. and Shen, H.-W. (2006). Multi-variate, time
varying, and comparative visualization with contex-
tual cues. IEEE Transactions on Visualization and
Computer Graphics, 12(5):909–916.
Overcoming the Curse of Dimensionality When Clustering Multivariate Volume Data
39