the European Union through the PI14/02161 and the
DTS15/00153 research projects and by the Ministerio
de Economía y Competitividad, Government of Spain
through the DPI2015-69948-R research project. Also,
this work has received financial support from the Eu-
ropean Union (European Regional Development Fund
- ERDF) and the Xunta de Galicia, Centro singular
de investigación de Galicia accreditation 2016-2019,
Ref. ED431G/01; and Grupos de Referencia Compe-
titiva, Ref. ED431C 2016-047.
REFERENCES
Alsaih, K., Lemaitre, G., Rastgoo, M., Massich, J., Sidibé,
D., and Meriaudeau, F. (2017). Machine Learning
Techniques for Diabetic Macular Edema (DME) Clas-
sification on SD-OCT Images. Biomed. Eng. Online,
16(1):68.
Baamonde, S., de Moura, J., Novo, J., and Ortega, M.
(2017). Automatic Detection of Epiretinal Membrane
in OCT Images by Means of Local Luminosity Pat-
terns. In International Work-Conference on Artificial
Neural Networks, pages 222–235. Springer.
Carmona, L. and Hernández, F. (2015). Revisión Biblio-
gráfica: Edema Macular Diabético, Repercusiones y
Tratamiento. Revista Médica del Instituto Mexicano
del Seguro Social, 53(5):600–607.
Chiu, S., Li, X., Nicholas, P., Toth, C., Izatt, J., and Farsiu,
S. (2010). Automatic Segmentation of Seven Reti-
nal Layers in SDOCT Images Congruent with Expert
Manual Segmentation. Opt. Express, 18(18):19413–
19428.
de Moura, J., Novo, J., Rouco, J., Penedo, M., and Ortega,
M. (2017). Automatic Identification of Intraretinal
Cystoid Regions in Optical Coherence Tomography.
In Conference on Artificial Intelligence in Medicine in
Europe, pages 305–315. Springer.
Dijkstra, E. (1959). A Note on Two Problems in Connexion
with Graphs. Numerische Mathematik, 1(1):269.
Gelfand, J., Nolan, R., Schwartz, D., Graves, J., and Green,
A. (2012). Microcystic Macular Oedema in Multiple
Sclerosis is Associated with Disease Severity. Brain,
135(6):1786–1793.
Goebel, W. and Kretzchmar-Gross, T. (2002). Retinal
Thickness in Diabetic Retinopathy: A Study Using
Optical Coherence Tomography (OCT). Retina,
22(6):759–767.
González, A., Remeseiro, B., Ortega, M., Penedo, M., and
Charlón, P. (2013). Automatic Cyst Detection in OCT
Retinal Images Combining Region Flooding and Tex-
ture Analysis. In CBMS, 2013 IEEE 26th Internatio-
nal Symposium on, pages 397–400. IEEE.
Gupta, A., Raman, R., Mohana, K., Kulothungan, V., and
Sharma, T. (2013). Communications Between Intra-
retinal and Subretinal Space on Optical Coherence
Tomography of Neurosensory Retinal Detachment in
Diabetic Macular Edema. Oman J.of Ophthalmol.,
6(3):183.
Helmy, Y. and Allah, H. (2013). Optical Coherence To-
mography Classification of Diabetic Cystoid Macular
Edema. Clin. Ophthalmol., 7:1731.
Joussen, A., Gardner, T., Kirchhof, B., and Ryan, S. (2010).
Retinal Vascular Disease. Springer Science & Busi-
ness Media.
Montuoro, A., Waldstein, S., Gerendas, B., Schmidt-
Erfurth, U., and Bogunovi
´
c, H. (2017). Joint Reti-
nal Layer and Fluid Segmentation in OCT Scans of
Eyes with Severe Macular Edema Using Unsupervi-
sed Representation and Auto-Context. Biomed. Opt.
Express, 8(3):1874–1888.
Noma, H., Funatsu, H., Mimura, T., and Shimada, K.
(2011). Visual Function and Serous Retinal Deta-
chment in Patients with Branch Retinal Vein Occlu-
sion and Macular Edema: A Case Series. BMC Opht-
halmology, 11(1):29.
Ooto, S., Tsujikawa, A., Mori, S., Tamura, H., Yamashiro,
K., and Yoshimura, N. (2010). Thickness of Photore-
ceptor Layers in Polypoidal Choroidal Vasculopathy
and Central Serous Chorioretinopathy. Graefe’s Arch.
Clin. and Exp. Ophthalmol., 248(8):1077–1086.
Otani, T., Kishi, S., and Maruyama, Y. (1999). Patterns
of Diabetic Macular Edema with Optical Coherence
Tomography. Am. J. of Ophthalmol., 127(6):688–693.
Otsu, N. (1979). A Threshold Selection Method from Gray-
Level Histograms. EEE Trans. Syst. Man. Cybern B.
Cybern., 9(1):62–66.
Panozzo, G., Parolini, B., Gusson, E., Mercanti, A., Pi-
nackatt, S., Bertoldo, G., and Pignatto, S. (2004). Dia-
betic Macular Edema: An OCT-Based Classification.
In Seminars in Ophthalmology, volume 19, pages 13–
20. Taylor & Francis.
Sidibé, D., Sankar, S., Lemaître, G., Rastgoo, M., Mas-
sich, J., Cheung, C., Tan, G., Milea, et al. (2017).
An Anomaly Detection Approach for the Identifica-
tion of DME Patients Using Spectral Domain Optical
Coherence Tomography Images. Comput. Methods
and Programs in Biomed., 139:109–117.
Trichonas, G. and Kaiser, P. (2014). Optical Coherence To-
mography Imaging of Macular Oedema. Br. J. of Op-
hthalmol., 98(Suppl 2):ii24–ii29.
WHO (2012). Global Data on Visual Impairments 2010.
Geneva: World Health Organ.
Willoughby, A., Chiu, S., Silverman, R., Farsiu, S., Bai-
ley, C., Wiley, H., Ferris, F., and Jaffe, G. (2017).
Platform-Independent Cirrus and Spectralis Thickness
Measurements in Eyes with Diabetic Macular Edema
Using Fully Automated Software. Transl. Vis. Sci. &
Technol., 6(1):9–9.
Wolff, B., Azar, G., Vasseur, V., Sahel, J.-A., Vignal, C.,
and Mauget-Faÿsse, M. (2014). Microcystic Changes
in the Retinal Internal Nuclear Layer Associated with
Optic Atrophy: a Prospective Study. J. Ophthalmol.,
2014.
Zhu, S. and Yuille, A. (1996). Region Competition: Uni-
fying Snakes, Region Growing, and bayes/MDL for
Multiband Image Segmentation. IEEE Trans.s on Pat-
tern Anal. and Mach. Intell., 18(9):884–900.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
540