gions and parts. In Computer Vision and Pattern Re-
cognition (CVPR), 2012 IEEE Conference on, pages
3378–3385.
Barinova, O., Lempitsky, V., and Kholi, P. (2012). On de-
tection of multiple object instances using hough trans-
forms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(9):1773–1784.
Biederman, I., Mezzanotte, R. J., and Rabinowitz, J. C.
(1982). Scene perception: Detecting and judging ob-
jects undergoing relational violations. Cognitive Psy-
chology, 14(2):143 – 177.
Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.
Criminisi, A., Shotton, J., and Konukoglu, E. (2012). De-
cision forests: A unified framework for classification,
regression, density estimation, manifold learning and
semi-supervised learning. Found. Trends. Comput.
Graph. Vis., 7(2):81–227.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., and Zisserman, A. (2010). The pascal visual ob-
ject classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2010). Object Detection with Discrimi-
natively Trained Part-Based Models. IEEE Transacti-
ons on Pattern Analysis and Machine Intelligence,
32(9):1627–1645.
Gall, J. and Lempitsky, V. (2009). Class-specific hough fo-
rests for object detection. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, pages 1022–1029.
Gall, J., Razavi, N., and Gool, L. V. (2012). An Introduction
to Random Forests for Multi-class Object Detection.
In Outdoor and Large-Scale Real-World Scene Ana-
lysis, number 7474 in Lecture Notes in Computer
Science, pages 243–263. Springer Berlin Heidelberg.
Gall, J., Yao, A., Razavi, N., Van Gool, L., and Lem-
pitsky, V. (2011). Hough forests for object detection,
tracking, and action recognition. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
33(11):2188–2202.
Gu, C., Lim, J. J., Arbelaez, P., and Malik, J. (2009). Recog-
nition using regions. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 1030–1037.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The
Elements of Statistical Learning. Springer Series in
Statistics. Springer New York, New York, NY.
He, X., Zemel, R. S., and Carreira-Perpinan, M. A. (2004).
Multiscale conditional random fields for image labe-
ling. In Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004, volume 2, pages II–
695–II–702 Vol.2.
Hock, H. S., Gordon, G. P., and Whitehurst, R. (1974). Con-
textual relations: The influence of familiarity, physi-
cal plausibility, and belongingness. Perception & Psy-
chophysics, 16(1):4–8.
Kontschieder, P., Bul, S. R., Pelillo, M., and Bischof, H.
(2014). Structured labels in random forests for seman-
tic labelling and object detection. IEEE Transacti-
ons on Pattern Analysis and Machine Intelligence,
36(10):2104–2116.
Kontschieder, P., Bul
`
o, S. R., Criminisi, A., Kohli, P., Pe-
lillo, M., and Bischof, H. (2012). Context-sensitive
decision forests for object detection. In Pereira, F.,
Burges, C. J. C., Bottou, L., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing
Systems 25, pages 431–439. Curran Associates, Inc.
Kontschieder, P., Rota Bul, S., Bischof, H., and Pelillo, M.
(2011). Structured class-labels in random forests for
semantic image labelling. In Computer Vision (ICCV),
2011 IEEE International Conference on, pages 2190–
2197. IEEE.
Ladick
´
y, L., Sturgess, P., Alahari, K., Russell, C., and Torr,
P. H. S. (2010). What, Where and How Many? Com-
bining Object Detectors and CRFs. In Computer Vi-
sion ECCV 2010, number 6314 in Lecture Notes in
Computer Science, pages 424–437. Springer Berlin
Heidelberg. DOI: 10.1007/978-3-642-15561-1
31.
Leibe, B., Leonardis, A., and Schiele, B. (2004). Combined
object categorization and segmentation with an impli-
cit shape model. In Workshop on statistical learning
in computer vision, ECCV, volume 2, page 7.
Lin, G., Shen, C., van den Hengel, A., and Reid, I. (2016).
Efficient piecewise training of deep structured models
for semantic segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Mottaghi, R., Chen, X., Liu, X., Cho, N.-G., Lee, S.-W.,
Fidler, S., Urtasun, R., and Yuille, A. (2014). The
Role of Context for Object Detection and Semantic
Segmentation in the Wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2014. CVPR 2014, pages 891–898.
Nowozin, S. and Lampert, C. H. (2011). Structured Le-
arning and Prediction in Computer Vision. Found.
Trends. Comput. Graph. Vis., 6(34):185–365.
Shotton, J., Winn, J., Rother, C., and Criminisi, A.
(2006). TextonBoost: Joint Appearance, Shape and
Context Modeling for Multi-class Object Recogni-
tion and Segmentation. In Leonardis, A., Bischof,
H., and Pinz, A., editors, Computer Vision ECCV
2006, number 3951 in Lecture Notes in Compu-
ter Science, pages 1–15. Springer Berlin Heidelberg.
DOI: 10.1007/11744023 1.
Tu, Z. (2008). Auto-context and its application to high-level
vision tasks. In IEEE Conference on Computer Vision
and Pattern Recognition, 2008. CVPR 2008, pages 1–
8.
Yang, Y., Hallman, S., Ramanan, D., and Fowlkes, C. C.
(2012). Layered Object Models for Image Segmen-
tation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(9):1731–1743.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
200