“focus” and “context” views on a single
visualization display by partitioning the overall
rendering into two regions with flexible widths. The
focus PCP renders the data with respect to priority
dimensions (whose number is kept small, below 10)
so that the corresponding axes are widely spaced.
The display can be enriched by adding ancillary
visualizations including axes overlays, embedded
parallel coordinates, and scatter plots. The context
PCP renders the same data with respect to all
remaining axes, which are tightly packed in a single
plot or a multi-level stacked layout. By
experimenting on two datasets consisting of 25 and
130 dimensions, we have demonstrated the potential
effectiveness of BPCP in visually exploring
high/ultra-high dimensional multivariate data, which
are on a rise in today’s big data world.
REFERENCES
Avidan, T. and Avidan, S. (1999). Parallax – a data
mining tool based on parallel coordinates.
Computational Statistics, 14:79-90.
Few, S. (2006). Multivariate analysis using parallel
coordinates. Perceptual Edge.
Inselberg, A. (2009). Parallel coordinates: visual
multidimensional geometry and its application.
Springer, New York.
Heinrich, J. and Weiskopf, D. (2013). State of the art of
parallel coordinates. In STAR Proceedings of
Eurographics, pages 95–116.
Siirtola, H. and Raiha, K. (2006). Interacting with parallel
coordinates. Interacting Computers, 18:1278-1309.
Gruendl, H., Riehmann, P., Pausch, Y., and Froehlich, B.
(2016). Time-series plots integrated in parallel
coordinates displays. In Eurographics/IEEE VGTC
Conference on Visualization, pages 321-330.
Riehmann, P., Opolka, J., and Froehlich, B. (2012). The
product explorer: Decision making with ease. In
International Working Conference on Advanced
Visual Interfaces, pages 423-432.
Spence R. and Apperley, M. D. (2013). A bifocal display.
The Encyclopedia of Human-Computer Interaction.
2
nd
Ed., Interaction Design Foundation.
Brodbeck, D. and Giradin, L. (2003). Design study: Using
multiple coordinated views to analyse geo-referenced
high-dimensional datasets. In International
Conference on Coordinated and Multiple Views in
Exploratory Visualization, pages 104-111.
Novotny, M. and Hauser, H. (2006). Outlier-preserving
focus + context visualization in parallel coordinates.
IEEE Transactions on Visualization and Computer
Graphics, 12:893-900.
Inselberg, A. (1997). Multidimensional detective. In IEEE
Symposium on Information Visualization, pages 100-
107.
Zhou, H., Yuan, X., Qu, H., Cui, W., and Chen, B. (2008).
Visual clustering in parallel coordinates. Computer
Graphics Forum, 27:1047-1054.
Heinrich, J., Stasko, J., and Weiskopf, D. (2012). The
parallel coordinates matrix. In Eurographics
Conference on Visualization, pages 37–41.
Lu, L. F., Huang, M. L., and Zhang, J. (2016). Two axes
re-ordering methods in parallel coordinates plots.
Journal of Visual Languages & Computing, 33:3–12.
Peltonen, J. and Lin, Z. (2017). Parallel coordinates plots
for neighbour retrieval. In 12
th
Joint International
Conference on Information Visualization Theory and
Applications, pages 40-51.
Yang, J., Peng, W., Ward, M. O., and Rundensteiner, E.
A. (2003). Interactive hierarchical dimension ordering,
spacing and filtering for exploration of high
dimensional datasets. In IEEE Symposium on
Information Visualization, pages 105-112.
Turkey, C., Filzmoser, P., and Hauser, H. (2011).
Brushing dimensions: a dual visual analysis model for
high-dimensional data. IEEE Transactions on
Visualization and Computer Graphics, 17:2591-2599.
Fua, Y. H., Ward, M. O., and Rundensteiner, E. A. (1999).
Hierarchical parallel coordinates for exploration of
large datasets. In IEEE Visualization, pages 43–50.
Peng, W., Ward, M. O., and Rundensteiner, E. A. (2004).
Clutter reduction in multi-dimensional data
visualization using dimension reordering. IEEE
Symposium on Information Visualization, pages 89-96.
Jolliffe, J. (1986). Principal component analysis. Springer
Verlag.
Mead, Al. (1992). Review of of the development of
multidimensional scaling methods. The Statistician,
33:27-35.
Von Huhn, R. (1931). A trigonometrical method for
computing the scales of statistical charts to improve
visualization. Journal of the American Statistical
Association, 26:319-324.
Johansson, J., Forsell, C., Lind, M., and Cooper, M.
(2008). Perceiving patterns in parallel coordinates:
determining thresholds for identification of
relationships. Information Visualization, 7:152-162.
Huamin, Q., Xiaoru, Y., Hong, Z., Peihong, G., and He, X.
(2009). Scattering points in parallel coordinates. IEEE
Transactions on Visualization and Computer
Graphics,15:1001-1008.
Kanjanabose, R., Rahman, A. A., and Chen, M. (2015). A
multitask comparative study on scatter plots and
parallel coordinates plots. In Eurographics Conference
on Visualization, 34:261-270.
Wang, J., Liu, X., Shen, H. W., and Lin, G. (2016).
Multiresolution climate ensemble parameter analysis
with nested parallel coordinates plots. IEEE
Transactions on Visualization and Computer
Graphics, 23:81-90.
Sangli, S. S., Kaur, G., and Karki, B. B. (2016). Star plot
visualization of ultrahigh dimensional multivariate
data. In International Conference on Advances in Big
Data Analytics, pages 91-97.
Bifocal Parallel Coordinates Plot for Multivariate Data Visualization
183