Table 1: Comparison between our proposed system and related works presented in Section 2.
Embedded GPU
Multipath
Detection
Multipath
Alert
Obstacle
Detection
Obstacle
Classification
Stereo
Vision
Acoustic
Feedback
3D Audio
Feedback
Our x x x x x x x x x
Mocanu x x x x
Deb x x
Bangar x x x x x
Poggi x x x x x
REFERENCES
Bangar, S., Narkhede, P., and Paranjape, R. (2013). Vo-
cal Vision for Visually I mpaired People. The Inter-
national Journal Of Engineering And Science (IJES),
2(3):1–7.
Bourbakis, N. (2008). Sensing surrounding 3-D space for
navigation of the blind. IEEE Engineering in Medi-
cine and Biology Magazine, 27(1):49–55.
Brunelli, R. (2009). Template Matching Techniques in Com-
puter Vision. John Wiley & Sons, Ltd, Chichester,
UK.
Deb, S., Reddy, S. T., Baidya, U., Sarkar, A. K., and
Renu, P. (2013). A novel approach of assisting
the visually impaired to navigate path and avoiding
obstacle-collisions. In 2013 3rd IEEE International
Advance Computing Conference (IACC), pages 1127–
1130. IEEE.
ESpeak (2007). eSpeak text to speech. Avaiable at
http://espeak.sourceforge.net/.
Fajarnes, G. P., Dunai, L., Praderas, V. S., and Dunai, I.
(2010). CASBliP - a new cognitive object detection
and orient ation system for imp aired people. I n Pro-
ceedings of the 4th International Conference on Cog-
nitive Systems, volume 7.
Hiebert, G., Charley, K. , Harrison, P., Jot, J.-M., Peacock,
D., Trivi, J.-M., and Vogelsang, C. (2017). OpenAL
Programmer ’ s Guide.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093.
Katz, B. F. G., Kammoun, S., tan Parseihian, G. e., Gutier-
rez, O., Brilhault, A., Auvray, M., Truillet, P., Denis,
M., Thorpe, S., and Jouffrais, C. (2012). NAVIG: aug-
mented reality guidance system for the visually impai-
red. Virtual Reality, 16(4):253–269.
Krizhevsky, A., Sutskever, I., and Geoffrey E., H. (2012).
ImageNet Classifi cation with Deep Convolutional
Neural Networks. Advances in Neural Information
Processing Systems 25 (NIP S2012), pages 1–9.
Leonard, J. and Durrant-Whyte, H. (1991). Mobile robot lo-
calization by tracking geometric beacons. IEEE Tran-
sactions on Robotics and Automation, 7(3):376–382.
Mehta, P., Kant, P., Shah, P., and Roy, A. K. ( 2011). V I -
Navi : A Novel Indoor Navigation System for Visually
Impaired People. International Conference on Com-
puter Systems and Technologies – CompSysTech’11
VI-Navi:, pages 365–371.
Mocanu, B., Tapu, R., and Zaharia, T. (2015). An Obstacle
Categorization System for Visually Impaired People.
2015 11th International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS), pages
147–154.
NVIDIA (2017). NVIDIA Embedded Systems and Develo-
per Kits.
Pissaloux, E. (2002). A characterization of vision systems
for blind people mobility. In IEEE International Con-
ference on Systems, Man and Cybernetics, volume
vol.4, page 6. IEEE.
Poggi, M. and Mattoccia, S. (2016). A Wearable Mobility
Aid for the Visually Impaired based on embedded 3D
Vision and Deep Learning. In First IEEE Workshop on
ICT Solutions for eHealth (IEEE ICTS4eHealth 2016)
in conjunction wi th the Twenty-First IEEE Symposium
on Computers and Communications.
Schauerte, B., Martinez, M., Constantinescu, A., and
Stiefelhagen, R. (2012). An assistive vision system
for the blind that helps find lost things. Computatio-
nal Science and Its Applications–ICCSA 2007, 7383
LNCS(Chapter 83):566–572.
Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabino-
vich, A. (2015). Going deeper with convolutions. In
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CV PR), pages 1–9. IEEE.
Tapu, R., Mocanu, B., and Zaharia, T. (2016). A computer
vision-based perception system for visually impaired.
Multimedia Tools and Applications, pages 1–37.
WHO (2014). Visual impairment and blindness. Technical
report.