Kumari, P., Kumar, S., and Vaish, A. (2014). Feature ex-
traction using emprical mode decomposition for bio-
metric system. In Signal Propagation and Computer
Technology (ICSPCT), 2014 International Conference
on, pages 283–287. IEEE.
Kutlu, Y. and Kuntalp, D. (2012). Feature extraction for
ecg heartbeats using higher order statistics of wpd
coefficients. Computer methods and programs in
biomedicine, 105(3):257–267.
Lane, R., Reiman, E., Ahern, G., and Thayer, J. (2001).
21. activity in medial prefrontal cortex correlates with
vagal component of heart rate variability during emo-
tion. Brain and Cognition, 47(1-2):97–100.
Lewis, N. G., McGovern, J. B., Miller, J. C., Eddy,
D. R., and Forster, E. M. (1988). Eeg indices of
g-induced loss of consciousness (g-loc). Techni-
cal report, SCHOOL OF AEROSPACE MEDICINE
BROOKS AFB TX.
Lin, C.-W., Wang, J.-S., and Chung, P.-C. (2010). Min-
ing physiological conditions from heart rate variabil-
ity analysis. IEEE Computational Intelligence Maga-
zine, 5(1):50–58.
Liou, L.-M., Ruge, D., Kuo, M.-C., Tsai, J.-C., Lin, C.-
W., Wu, M.-N., Hsu, C.-Y., and Lai, C.-L. (2014).
Functional connectivity between parietal cortex and
the cardiac autonomic system in uremics. The Kaoh-
siung journal of medical sciences, 30(3):125–132.
McCraty, R., Atkinson, M., Tomasino, D., and Bradley,
R. T. (2009). The coherent heart heart-brain interac-
tions, psychophysiological coherence, and the emer-
gence of system-wide order. Integral Review: A
Transdisciplinary & Transcultural Journal for New
Thought, Research, & Praxis, 5(2).
Mirsadeghi, M., Behnam, H., Shalbaf, R., and Moghadam,
H. J. (2016). Characterizing awake and anesthetized
states using a dimensionality reduction method. Jour-
nal of Medical Systems, 40(1):1.
Miyashita, T., Ogawa, K., Itoh, H., Arai, Y., Ashidagawa,
M., Uchiyama, M., Koide, Y., Andoh, T., and Yamada,
Y. (2003). Spectral analyses of electroencephalogra-
phy and heart rate variability during sleep in normal
subjects. Autonomic Neuroscience, 103(1):114–120.
Mporas, I., Tsirka, V., Zacharaki, E. I., Koutroumani-
dis, M., Richardson, M., and Megalooikonomou, V.
(2015). Seizure detection using eeg and ecg signals
for computer-based monitoring, analysis and manage-
ment of epileptic patients. Expert Systems with Appli-
cations, 42(6):3227–3233.
Mumtaz, W., Xia, L., Yasin, M. A. M., Ali, S. S. A., and
Malik, A. S. (2017). A wavelet-based technique to
predict treatment outcome for major depressive disor-
der. PloS one, 12(2):e0171409.
Nasehi, S. and Pourghassem, H. (2011). Real-time seizure
detection based on eeg and ecg fused features using
gabor functions. In Intelligent Computation and Bio-
Medical Instrumentation (ICBMI), 2011 International
Conference on, pages 204–207. IEEE.
Prinsloo, G. E., Rauch, H. L., Karpul, D., and Derman,
W. E. (2013). The effect of a single session of short
duration heart rate variability biofeedback on eeg: a
pilot study. Applied psychophysiology and biofeed-
back, 38(1):45–56.
Sakai, S., Hori, E., Umeno, K., Kitabayashi, N., Ono,
T., and Nishijo, H. (2007). Specific acupunc-
ture sensation correlates with eegs and autonomic
changes in human subjects. Autonomic Neuroscience,
133(2):158–169.
Saper, C. B., Scammell, T. E., and Lu, J. (2005). Hypothala-
mic regulation of sleep and circadian rhythms. Nature,
437(7063):1257.
Stoica, P. and Moses, R. L. (1997). Introduction to spectral
analysis, volume 1. Prentice hall Upper Saddle River,
NJ.
Stuss, D. T. and Benson, D. F. (1986). The frontal lobes.
Raven Pr.
Sudarshan, V. K., Acharya, U. R., Oh, S. L., Adam, M.,
Tan, J. H., Chua, C. K., Chua, K. P., and San Tan,
R. (2017). Automated diagnosis of congestive heart
failure using dual tree complex wavelet transform and
statistical features extracted from 2s of ecg signals.
Computers in Biology and Medicine, 83:48–58.
Takahashi, T., Murata, T., Hamada, T., Omori, M., Kosaka,
H., Kikuchi, M., Yoshida, H., and Wada, Y. (2005).
Changes in eeg and autonomic nervous activity dur-
ing meditation and their association with personal-
ity traits. International Journal of Psychophysiology,
55(2):199–207.
Thomas, M., Das, M. K., and Ari, S. (2015). Automatic
ecg arrhythmia classification using dual tree complex
wavelet based features. AEU-International Journal of
Electronics and Communications, 69(4):715–721.
Thomas, P. and Moni, R. (2016). Methods for improving the
classification accuracy of biomedical signals based on
spectral features. Technology, 7(1):105–116.
Triggiani, A. I., Valenzano, A., Del Percio, C., Marzano,
N., Soricelli, A., Petito, A., Bellomo, A., Bas¸ar, E.,
Mundi, C., Cibelli, G., et al. (2016). Resting state
rolandic mu rhythms are related to activity of sym-
pathetic component of autonomic nervous system in
healthy humans. International Journal of Psychophys-
iology, 103:79–87.
Unser, M. and Aldroubi, A. (1996). A review of wavelets
in biomedical applications. Proceedings of the IEEE,
84(4):626–638.
Valderrama, M., Alvarado, C., Nikolopoulos, S., Mar-
tinerie, J., Adam, C., Navarro, V., and Le Van Quyen,
M. (2012). Identifying an increased risk of epileptic
seizures using a multi-feature eeg–ecg classification.
Biomedical Signal Processing and Control, 7(3):237–
244.
Yang, C. C., Lai, C.-W., Lai, H. Y., and Kuo, T. B.
(2002). Relationship between electroencephalogram
slow-wave magnitude and heart rate variability during
sleep in humans. Neuroscience letters, 329(2):213–
216.
BIOSIGNALS 2018 - 11th International Conference on Bio-inspired Systems and Signal Processing
146