everyday use by subjects who have undergone a
laryngectomy. Encouraged by the results obtained so
far, work is underway to further evaluate the
background cancellation scheme and to develop other
aspects of the system so that a speech rehabilitation
system can be offered to individuals who have
undergone a laryngectomy which they find preferable
to existing methods.
ACKNOWLEDGEMENTS
The report is an independent research funded by the
National Institute for Health Research (NIHR)’s
Invention for Innovation Programme (Grant Referen-
ce Number II-LB-0814-20007). The views stated are
those of the authors and not necessarily those of the
NHS, the NIHR or the Department of Health.
REFERENCES
Brumberg, J. S., Nieto-Castanon, A., Kennedy, P. R., and
Guenther, F. H. (2010). Brain-computer interfaces for
speech communication. Speech Communication,
52(4):367-379.
Cheah, L. A., Bai, J., Gonzalez, J. A., Ell, S. R., Gilbert, J.
M., Moore, R. K., and Green, P. D. (2015). A user-
centric design of permanent magnetic articulography
based assistive speech technology. In Proc.
BIOSIGNALS, pages 109-116, Lisbon, Portugal.
Denby, B., Schultz, T., Honda, K., Hueber, T., Gilbert, J.
M., and Brumberg, J. S. (2010). Silent speech
interfaces. Speech Communication, 52(4):270-287.
Danker, H., Wollbrück, D., Singer, S., Fuchs. M., Brähler,
B., and Meyer, A. (2010). Social withdrawal after
laryngectomy. Eur Arch Otorhinolaryngol, 267(4):593-
600.
Fagan, M. J., Ell, S. R., Gilbert, J. M., Sarrazin, E., and
Chapman, P. M. (2008). Development of a (silent)
speech recognition system for patients following
laryngectomy. Medical Engineering & Physics,
30(4):419-425.
Gilbert, J. M., Rybchenko, S. I., Hofe, R., Ell, S. R., Fagan,
M. J., Moore, R. K. and Green, P. D. (2010). Isolated
word recognition of silent speech using magnetic
implants and sensors. Medical Engineering & Physics,
32(10):1189-1197.
Gilbert J. M., Gonzalez J.A., Cheah L.A., Ell, S.R., Green
P., Moore R.K. and Holdsworth E., Restoring speech
following total removal of the larynx by a learned
transformation from sensor data to acoustics, The
Journal of the Acoustical Society of America 141,
EL307 (2017);
Gonzalez, J. A., Cheah, L. A., Gilbert, J. M., Bai, J., Ell, S.
R., Green, P. D., and Moore, R. K. (2016). A silent
speech system based on permanent magnet
articulography and direct synthesis. Computer Speech
& Language, 39:67-87
Gonzalez, J. A., Cheah, L. A., Green, P. D., Gilbert, J. M.,
Ell, S. R., Moore, R. K., and Holdsworth, E. (2017).
Evaluation of a silent speech interface based on
magnetic sensing and deep learning for a phonetically
rich vocabulary. In Proc. Interspeech, pages 3986-
3990, Stockholm, Sweden.
Herff, C., Heger, D., de Pesters, A., Telaar, D., Brunner, P.,
Schalk, G., and Schultz, T. (2015). Brain-to-text:
decoding spoken phrases from phone representations in
the brain. Frontiers in Neuroscience, 9(217).
Hofe, R., Ell, S. R., Fagan, M. J., Gilbert, J. M., Green, P.
D., Moore, R. K., and Rybchenko, S. I. (2013). Small-
vocabulary speech recognition using silent speech
interface based on magnetic sensing. Speech
Communication, 55(1):22-32.
Hueber, T., Benaroya, E.-L., Chollet, G., Denby, B.,
Dreyfus, G., and Stone, M. (2010). Development of a
silent speech interface driven by ultrasound and optical
images of the tongue and lips. Speech Communication,
52(4):288-300.
Kubichek, R. (1993). Mel-cepstral distance measure for
objective speech quality assessment. In Proc. IEEE
Pacific Rim Conference on Communications,
Computers and Signal Processing, pages 125–128,
Victoria, Canada.
Leonard, R. G. (1984). A database for speaker-independent
digit recognition. In Proc. ICASSP, pages 328-331, San
Diego, USA.
Such, O. (2007). Motion tolerance in wearable sensors– the
challenge of motion artifact. In Proc. IEEE EMBC,
pages 1542-1545, Lyon, France.
Schultz, T., and Wand, M. (2010). Modeling coarticulation
in EMG-based continuous speech recognition. Speech
Communication, 52(4):341-353.
Toda, T., Black, A. W., and Tokuda, K. (2008). Statistical
mapping between articulatory movements and acoustic
spectrum using a Gaussian mixture model. Speech
Communication, 50(3): 215-227.
Wand, M., Janke, M., and Schultz, T. (2014). Tackling
speaking mode varieties in EMG-based speech
ecognition. IEEE Transactions on Biomedical
Engineering, 61(10):2515-2526.
BIODEVICES 2018 - 11th International Conference on Biomedical Electronics and Devices
62