reduce the amount of data to be analyzed from step
to step, which is important for a successful compara-
tive visualization at high interactivity. Hardware limi-
tations such as data reading speed from hard disk or
GPU memory size are the main bottle necks of our sy-
stem. One of the features of our system is that it works
equally well with data of any type and any spatial con-
figuration. Thus, our general tools can be amended
for specific purposes.
ACKNOWLEDGMENTS
This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG) under contract LI 1530/21-1.
REFERENCES
Akiba, H., Fout, N., and Ma, K.-L. (2006). Simultaneous
classification of time-varying volume data based on
the time histogram. In Proceedings of the Eighth Joint
Eurographics / IEEE VGTC Conference on Visualiza-
tion, pages 171–178.
Akiba, H. and Ma, K.-L. (2007). A tri-space visualiza-
tion interface for analyzing time-varying multivariate
volume data. In Proceedings of the 9th Joint Euro-
graphics / IEEE VGTC conference on Visualization,
EUROVIS’07, pages 115–122.
Berger, W., Piringer, H., Filzmoser, P., and Gr
¨
oller, E.
(2011). Uncertainty-aware exploration of continuous
parameter spaces using multivariate prediction. Com-
puter Graphics Forum, 30(3):911–920.
Buono, P., Aris, A., Plaisant, C., Khella, A., and Shnei-
derman, B. (2005). Interactive pattern search in time
series. In Proceedings of SPIE, volume 5669, pages
175–186.
Busking, S., Botha, C. P., and Post, F. H. (2010). Dynamic
multi-view exploration of shape spaces. In Procee-
dings of the 12th Eurographics / IEEE - VGTC confe-
rence on Visualization, EuroVis’10, pages 973–982.
Chen, H., Zhang, S., Chen, W., Mei, H., Zhang, J., Mer-
cer, A., Liang, R., and Qu, H. (2015). Uncertainty-
aware multidimensional ensemble data visualization
and exploration. IEEE Transactions on Visualization
and Computer Graphics, 21(9):1072–1086.
Fofonov, A., Molchanov, V., and Linsen, L. (2016). Vi-
sual analysis of multi-run spatio-temporal simulati-
ons using isocontour similarity for projected views.
IEEE Transactions on Visualization and Computer
Graphics, 22(8):2037–2050.
Kehrer, J. and Hauser, H. (2013). Visualization and vi-
sual analysis of multifaceted scientific data: A sur-
vey. IEEE Transactions on Visualization and Com-
puter Graphics, 19(3):495–513.
Kehrer, J., Member, S., Ladst
¨
adter, F., Doleisch, H., Steiner,
A., and Hauser, H. (2008). Hypothesis generation in
climate research with interactive visual data explora-
tion. In IEEE Transactions on Visualization and Com-
puter Graphics, pages 1579–1586.
Konyha, Z., Le
ˇ
z, A., Matkovi
´
c, K., Jelovi
´
c, M., and Hauser,
H. (2012). Interactive visual analysis of families of
curves using data aggregation and derivation. In Pro-
ceedings of the 12th International Conference on Kno-
wledge Management and Knowledge Technologies, i-
KNOW ’12, pages 24:1–24:8.
Lee, T.-Y. and Shen, H.-W. (2009). Visualization and explo-
ration of temporal trend relationships in multivariate
time-varying data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 15(6):1359–1366.
Moere, A. (2004). Time-varying data visualization using
information flocking boids. In IEEE Symposium on
Information Visualization, INFOVIS 2004, pages 97–
104.
Phadke, M. N., Pinto, L., Alabi, O., Harter, J., Taylor II,
R. M., Wu, X., Petersen, H., Bass, S. A., and Healey,
C. G. (2012). Exploring ensemble visualization. In
Proc. SPIE, volume 8294, pages 1–12.
P
¨
othkow, K., Weber, B., and Hege, H.-C. (2011). Proba-
bilistic marching cubes. Computer Graphics Forum,
30(3):931–940.
Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Dou-
triaux, C., Pascucci, V., and Johnson, C. (2009a).
Ensemble-vis: A framework for the statistical visuali-
zation of ensemble data. In IEEE Workshop on Kno-
wledge Discovery from Climate Data: Prediction, Ex-
tremes., pages 233–240.
Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Dout-
riaux, C., Pascucci, V., and Johnson, C. (2009b). Vi-
sualization of uncertainty and ensemble data: Explo-
ration of climate modeling and weather forecast data
with integrated visus-cdat systems. Journal of Phy-
sics: Conference Series, 180(1).
Preston, A., Ghods, R., Xie, J., Sauer, F., Leaf, N., Ma,
K. L., Rangel, E., Kovacs, E., Heitmann, K., and Ha-
bib, S. (2016). An integrated visualization system
for interactive analysis of large, heterogeneous cos-
mology data. In 2016 IEEE Pacific Visualization Sym-
posium (PacificVis), pages 48–55.
Price, D. J. (2007). Splash: An interactive visualisation
tool for smoothed particle hydrodynamics simulati-
ons. Publications of the Astronomical Society of Au-
stralia, 24:159–173.
Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., and
Moorhead, R. J. (2010). Noodles: A tool for visua-
lization of numerical weather model ensemble uncer-
tainty. IEEE Transactions on Visualization and Com-
puter Graphics, 16(6):1421 – 1430.
Wickelmaier, F. (2003). An introduction to MDS. Aal-
borg Universitetscenter. Institut for Elektroniske Sy-
stemer. Afdeling for Kommunikationsteknologi. Rap-
port. Aalborg Universitetsforlag.
Woodring, J. and Shen, H.-W. (2006). Multi-variate, time
varying, and comparative visualization with contex-
tual cues. IEEE Transactions on Visualization and
Computer Graphics, 12(5):909–916.
MultiVisA: Visual Analysis of Multi-run Physical Simulation Data using Interactive Aggregated Plots
73