5 CONCLUSIONS
In this paper we presented a methodology to perform
semi-automatic distributed EHR database queries that
uses preexisting partial solutions and open-source
software. The query process presented enables the
researcher to formulate a feasibility question and ob-
tain statistical and aggregated information about data
from different databases without accessing these data
directly or contacting the various data custodians.
ACKNOWLEDGEMENTS
This work has received support from the EU/EFPIA
Innovative Medicines Initiative Joint Undertaking
(EMIF grant n. 115372).
REFERENCES
Basti
˜
ao, S. L., D
´
ıas, C., van der Lei, J., and Oliveira, J. L.
(2014). Architecture to summarize patient-level data
across borders and countries. Studies in health tech-
nology and informatics, 216:687–690.
Cushman, R., Froomkin, A. M., Cava, A., Abril, P., and
Goodman, K. W. (2010). Ethical, legal and social
issues for personal health records and applications.
Journal of biomedical informatics, 43(5):S51–S55.
Daniel, C., Ouagne, D., Sadou, E., Forsberg, K.,
Mc Gilchrist, M., Zapletal, E., Paris, N., Hussain,
S., Jaulent, M.-C., and Kalra, D. (2016). Cross bor-
der semantic interoperability for clinical research: the
ehr4cr semantic resources and services. AMIA Sum-
mits on Translational Science Proceedings, 2016:51.
Doods, J., Botteri, F., Dugas, M., and Fritz, F. (2014).
A european inventory of common electronic health
record data elements for clinical trial feasibility. Tri-
als, 15(1):18.
Harris, S. B., Glazier, R. H., Tompkins, J. W., Wilton, A. S.,
Chevendra, V., Stewart, M. A., and Thind, A. (2010).
Investigating concordance in diabetes diagnosis be-
tween primary care charts (electronic medical records)
and health administrative data: a retrospective cohort
study. BMC health services research, 10(1):347.
Hersh, W. R. (2007). Adding value to the electronic health
record through secondary use of data for quality assur-
ance, research, and surveillance. Am J Manag Care,
81:126–128.
Hripcsak, G., Duke, J. D., Shah, N. H., Reich, C. G., Huser,
V., Schuemie, M. J., Suchard, M. A., Park, R. W.,
Wong, I. C. K., Rijnbeek, P. R., et al. (2015). Obser-
vational health data sciences and informatics (ohdsi):
opportunities for observational researchers. Studies in
health technology and informatics, 216:574.
Kahn, M. G., Batson, D., and Schilling, L. M. (2012).
Data model considerations for clinical effectiveness
researchers. Medical care, 50.
K
¨
opcke, F. and Prokosch, H.-U. (2014). Employing com-
puters for the recruitment into clinical trials: a com-
prehensive systematic review. Journal of medical In-
ternet research, 16(7).
Lopes, P., Silva, L. B., and Oliveira, J. L. (2015). Chal-
lenges and opportunities for exploring patient-level
data. BioMed research international, 2015.
Mann, C. (2003). Observational research methods. research
design ii: cohort, cross sectional, and case-control
studies. Emergency medicine journal, 20(1):54–60.
McDonald, H., Nitsch, D., Millett, E., Sinclair, A., and
Thomas, S. (2014). New estimates of the burden
of acute community-acquired infections among older
people with diabetes mellitus: a retrospective cohort
study using linked electronic health records. Diabetic
medicine, 31(5):606–614.
McMurry, A. J., Murphy, S. N., MacFadden, D., Weber, G.,
Simons, W. W., Orechia, J., Bickel, J., Wattanasin, N.,
Gilbert, C., Trevvett, P., et al. (2013). Shrine: en-
abling nationally scalable multi-site disease studies.
PloS one, 8(3):e55811.
Meystre, S., Lovis, C., B
¨
urkle, T., Tognola, G., Budrionis,
A., Lehmann, C., et al. (2017). Clinical data reuse
or secondary use: Current status and potential future
progress. IMIA Yearbook.
Miller, A. R. and Tucker, C. (2014). Health information
exchange, system size and information silos. Journal
of health economics, 33:28–42.
Murphy, S. N., Weber, G., Mendis, M., Gainer, V., Chueh,
H. C., Churchill, S., and Kohane, I. (2010). Serv-
ing the enterprise and beyond with informatics for
integrating biology and the bedside (i2b2). Jour-
nal of the American Medical Informatics Association,
17(2):124–130.
Ogunyemi, O. I., Meeker, D., Kim, H.-E., Ashish, N.,
Farzaneh, S., and Boxwala, A. (2013). Identifying
appropriate reference data models for comparative ef-
fectiveness research (cer) studies based on data from
clinical information systems. Medical care, 51:S45–
S52.
Ohmann, C. and Kuchinke, W. (2007). Meeting the chal-
lenges of patient recruitment. International Journal
of Pharmaceutical Medicine, 21(4):263–270.
Pakhomov, S., Weston, S. A., Jacobsen, S. J., Chute, C. G.,
Meverden, R., Roger, V. L., et al. (2007). Electronic
medical records for clinical research: application to
the identification of heart failure. Am J Manag Care,
13(6 Part 1):281–288.
Platt, R. and Carnahan, R. (2012). The us food and drug ad-
ministration’s mini-sentinel program. pharmacoepi-
demiology and drug safety, 21(S1):1–303.
Pringle, S. and Lippitt, A. (2009). Interoperability of elec-
tronic health records and personal health records: key
interoperability issues associated with information ex-
change. Journal of healthcare information manage-
ment: JHIM, 23(3):31–37.
Reisner, S. L., Vetters, R., Leclerc, M., Zaslow, S., Wol-
frum, S., Shumer, D., and Mimiaga, M. J. (2015).
Mental health of transgender youth in care at an ado-
lescent urban community health center: a matched ret-
A Methodology to Perform Semi-automatic Distributed EHR Database Queries
133