Windows with length around 60 frames were ideal for
achieving the best classification results.
It is not known by the authors of this paper any
other public database containing mocap data anno-
tated for actions corresponding to whole body motion
obtained from IMU sensors (including acceleration or
speed data).
As future work, there many are possible research
lines such as Attempting to reconstructing motion
from upper-limbs sparse data. Another future work
is to build an application integrating this model with
a real virtual reality-based game.
REFERENCES
(2015). Myo gesture control armband - wearable technol-
ogy by thalmic labs.
(2017a). Playstation (ps) move motion controller ps3 mo-
tion controller.
(2017). Torch: A scientific computing framework for luajit.
(2017b). Vive.
Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., and
Baskurt, A. (2011). Sequential deep learning for hu-
man action recognition. In International Workshop
on Human Behavior Understanding, pages 29–39.
Springer.
Berger, K., Ruhl, K., Schroeder, Y., Bruemmer, C., Scholz,
A., and Magnor, M. A. (2011). Markerless motion
capture using multiple color-depth sensors. In VMV,
pages 317–324.
Chen, X. (2013). Human motion analysis with wearable
inertial sensors.
Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press. http://www.
deeplearningbook.org.
Graves, A., Liwicki, M., Fern
´
andez, S., Bertolami, R.,
Bunke, H., and Schmidhuber, J. (2009). A novel
connectionist system for unconstrained handwriting
recognition. IEEE transactions on pattern analysis
and machine intelligence, 31(5):855–868.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.
Kr
¨
uger, B., Tautges, J., Weber, A., and Zinke, A. (2010).
Fast local and global similarity searches in large mo-
tion capture databases. In Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, pages 1–10. Eurographics Associa-
tion.
Kuni, R., Prathivadi, Y., Wu, J., Bennett, T. R., and Jafari,
R. (2015). Exploration of interactions detectable by
wearable imu sensors. In 2015 IEEE 12th Interna-
tional Conference on Wearable and Implantable Body
Sensor Networks (BSN), pages 1–6. IEEE.
McCaffrey, J. (2017). Machine learning - exploring the mi-
crosoft cntk machine learning tool. volume 32. MSDN
Magazine Blog.
NVIDIA (2017). Nvidia digits - interactive deep learning
gpu training system.
Olah, C. (2015). Understanding lstm networks.
Prathivadi, Y., Wu, J., Bennett, T. R., and Jafari, R. (2014).
Robust activity recognition using wearable imu sen-
sors. In IEEE SENSORS 2014 Proceedings, pages
486–489. IEEE.
Rautaray, S. S. and Agrawal, A. (2015). Vision based hand
gesture recognition for human computer interaction: a
survey. Artificial Intelligence Review, 43(1):1–54.
Schuldt, C., Laptev, I., and Caputo, B. (2004). Recogniz-
ing human actions: a local svm approach. In Pat-
tern Recognition, 2004. ICPR 2004. Proceedings of
the 17th International Conference on, volume 3, pages
32–36. IEEE.
Silva, A. R., Valente, L., Clua, E., and Feij
´
o, B. (2015). An
indoor navigation system for live-action virtual reality
games. In Computer Games and Digital Entertain-
ment (SBGames), 2015 14th Brazilian Symposium on,
pages 1–10. IEEE.
Tautges, J., Zinke, A., Kr
¨
uger, B., Baumann, J., Weber,
A., Helten, T., M
¨
uller, M., Seidel, H.-P., and Eber-
hardt, B. (2011). Motion reconstruction using sparse
accelerometer data. ACM Transactions on Graphics
(TOG), 30(3):18.
Vision, B. (2017). Caffe: Deep learning framework.
Wachs, J. P., K
¨
olsch, M., Stern, H., and Edan, Y. (2011).
Vision-based hand-gesture applications. Communica-
tions of the ACM, 54(2):60–71.
Wei, X., Zhang, P., and Chai, J. (2012). Accurate realtime
full-body motion capture using a single depth camera.
ACM Transactions on Graphics (TOG), 31(6):188.
Weinland, D., Ronfard, R., and Boyer, E. (2011). A sur-
vey of vision-based methods for action representation,
segmentation and recognition. Comput. Vis. Image
Underst., 115(2):224–241.
Yuan, Q. and Chen, I.-M. (2014). Localization and velocity
tracking of human via 3 imu sensors. Sensors and
Actuators A: Physical, 212:25–33.
Zhang, R. and Li, C. (2015). Motion sequence recogni-
tion with multi-sensors using deep convolutional neu-
ral network. In Intelligent Data Analysis and Applica-
tions, pages 13–23. Springer.
Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-
level convolutional networks for text classification. In
Advances in Neural Information Processing Systems,
pages 649–657.
GRAPP 2018 - International Conference on Computer Graphics Theory and Applications
222