ACKNOWLEDGEMENT
The research presented here was partially supported
by the National Science Centre in Poland granted
with decision number DEC-2016/23/B/ST6/03455
(for KP), DEC-2014/13/B/ST7/00755 (for AS and
JK) and BKM- 508 /RAU1/2017 t. 6 (MO).
Calculations were performed on the Ziemowit
computational cluster created in the EU Innovative
Economy Operational Programme (POIG).02.01.00-
00-166/08 project (BIO-FARMA) and expanded in
the POIG.02.03.01-00-040/13 project (Syscancer)
(http://www.ziemowit.hpc.polsl.pl).
REFERENCES
Bar-Or, R. L., Maya, R., Segel, L. A., Alon, U., Levine,
A. J., and Oren, M. (2000). Generation of oscilla-
tions by the p53-mdm2 feedback loop: a theoretical
and experimental study. Proceedings of the National
Academy of Sciences, 97(21):11250–11255.
Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R.,
Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P.,
Lahav, G., et al. (2006). Oscillations and variability in
the p53 system. Molecular systems biology, 2(1).
Jonak, K., Kurpas, M., Szoltysek, K., Janus, P., Abramow-
icz, A., and Puszynski, K. (2016). A novel mathemat-
ical model of atm/p53/nf-κ b pathways points to the
importance of the ddr switch-off mechanisms. BMC
systems biology, 10(1):75.
Klamka, J., Czornik, A., and Niezabitowski, M. (2013).
Stability and controllability of switched systems. Bull.
Pol. Acad. Sci., Tech. Sci. (Online), 61(3):547–555.
Kracikova, M., Akiri, G., George, A., Sachidanandam, R.,
and Aaronson, S. (2013). A threshold mechanism me-
diates p53 cell fate decision beteen growth arrest and
apoptosis. Cell Death Differ, 20:576–588.
Mestl, T., Plahte, E., and Omholt, S. W. (1995). A mathe-
matical framework for describing and analysing gene
regulatory networks. Journal of Theoretical Biology,
176(2):291–300.
Ochab, M., Puszynski, K., and Swierniak, A. (2016). Appli-
cation of the piece-wise linear models for description
of nonlinear biological systems based on p53 regula-
tory unit. In Proc. XXI National Conference on Ap-
plications of Mathematics in Biology and Medicine,
Sandomierz, pages 85–90.
Ochab, M., Puszynski, K., Swierniak, A., and Klamka, J.
(2017a). Variety behavior in the piece-wise linear
model of the p53-regulatory module. In International
Conference on Bioinformatics and Biomedical Engi-
neering, pages 208–219. Springer.
Ochab, M., Swierniak, A., Klamka, J., and Puszynski, K.
(2017b). Influence of the stochasticity in threshold
localization on cell fate in the plde-model of the p53
module. In Polish Conference on Biocybernetics and
Biomedical Engineering, pages 205–217. Springer.
Plahte, E., Mestl, T., and Omholt, S. W. (1994). Global
analysis of steady points for systems of differential
equations with sigmoid interactions. Dynamics and
Stability of Systems, 9(4):275–291.
Plahte, E., Mestl, T., and Omholt, S. W. (1998). A method-
ological basis for description and analysis of systems
with complex switch-like interactions. Journal of
mathematical biology, 36(4):321–348.
Schmitt, C. A. and Lowe, S. W. (1999). Apoptosis and ther-
apy. J. Pathol, 187:127–137.
Swierniak, A. and Klamka, J. (2014). Comparison of con-
trollability conditions for models of antiangiogenic
and combined anticancer therapy. In Proc. 19th World
Congress The International Federation of Automatic
Control, Cape Town.
Vousden, K. H. and Lu, X. (2002). Live or let die: the cell’s
response to p53. Nature, 2:594–604.
BIOINFORMATICS 2018 - 9th International Conference on Bioinformatics Models, Methods and Algorithms
126