REFERENCES
Allen, J. (2007). Photoplethysmography and its applica-
tion in clinical physiological measurement. Physiol.
Meas., 28(3):R1–R39.
Barker, S. and Shah, N. (1997). The effects of motion on the
performance of pulse oximeters in volunteers (revised
publication). Anesthesiology, (86):101–108.
Bittium Biosignals Ltd (2017). eMotion Faros 180.
http://www.megaemg.com/products/faros/. [Online;
accessed 22-August-2017].
Chong, J. W., Dao, D. K., Salehizadeh, S. M., McManus,
D. D., Darling, C. E., Chon, K. H., and Mendelson,
Y. (2014). Photoplethysmograph Signal Reconstruc-
tion Based on a Novel Hybrid Motion Artifact Detec-
tion Reduction Approach. Part I: Motion and Noise
Artifact Detection. Ann. Biomed. Eng., 42(11):2238–
2250.
Dao, D., Salehizadeh, S. M. A., Noj, Y., Chong, J. W.,
Cho, C., Mcmanus, D., Darling, C. E., Mendelson,
Y., and Chon, K. H. (2016). A Robust Motion
Artifact Detection Algorithm for Accurate Detection
of Heart Rates from Photoplethysmographic Signals
using Time-Frequency Spectral Features. IEEE J.
Biomed. Heal. informatics, 21(5):1242–1253.
De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C.,
De Brabanter, J., Pelckmans, K., De Moor, B., Van-
dewalle, J., and Suykens, J. a. K. (2003). LS-
SVMlab Toolbox User’s Guide. Pattern Recognit.
Lett., 3(February):179–202.
Empatica Inc (2017). Empatica E4 wristband.
https://www.empatica.com/e4-wristband. [Online;
accessed 22-August-2017].
Fischer, C., Domer, B., Wibmer, T., and Penzel, T. (2017).
An algorithm for real-time pulse waveform segmen-
tation and artifact detection in photoplethysmograms.
IEEE J. Biomed. Heal. Informatics, 21(2):372–381.
Fukushima, H., Kawanaka, H., Bhuiyan, M. S., and Oguri,
K. (2012). Estimating heart rate using wrist-type pho-
toplethysmography and acceleration sensor while run-
ning. In Engineering in Medicine and Biology Soci-
ety (EMBC), 2012 Annual International Conference of
the IEEE, pages 2901–2904. IEEE.
Gil, E., Mar
´
ıa Vergara, J., and Laguna, P. (2008). Detection
of decreases in the amplitude fluctuation of pulse pho-
toplethysmography signal as indication of obstructive
sleep apnea syndrome in children. Biomed. Signal
Process. Control, 3(3):267–277.
Karlen, W., Kobayashi, K., Ansermino, J. M., and Dumont,
G. A. (2012). Photoplethysmogram signal quality
estimation using repeated Gaussian filters and cross-
correlation. Physiol. Meas., 33(10):1617–1629.
Kim, B. S. and Yoo, S. K. (2006). Motion artifact reduction
in photoplethysmography using independent compo-
nent analysis. IEEE Trans. Biomed. Eng., 53(3):566–
568.
Krishnan, R., Natarajan, B., and Warren, S. (2008). Anal-
ysis and detection of motion artifact in photoplethys-
mographic data using higher order statistics. In Acous-
tics, Speech and Signal Processing, 2008. ICASSP
2008. IEEE International Conference on, pages 613–
616. IEEE.
Lai, P. and Kim, I. (2015). Lightweight wrist photoplethys-
mography for heavy exercise: motion robust heart rate
monitoring algorithm. Healthcare Technology Letters,
2(1):6–11.
L
´
azaro, J., Gil, E., Vergara, J. M., and Laguna, P. (2014).
Pulse rate variability analysis for discrimination of
sleep-apnea-related decreases in the amplitude fluctu-
ations of pulse photoplethysmographic signal in chil-
dren. IEEE J. Biomed. Heal. Informatics, 18(1):240–
246.
Lee, B., Han, J., Baek, H. J., Shin, J. H., Park, K. S., and Yi,
W. J. (2010). Improved elimination of motion artifacts
from a photoplethysmographic signal using a kalman
smoother with simultaneous accelerometry. Physiol
Meas, 31(12):1585–603.
Li, K. and Warren, S. (2012). A wireless reflectance pulse
oximeter with digital baseline control for unfiltered
photoplethysmograms. IEEE Trans. Biomed. Circuits
Syst., 6(3):269–278.
Li, K., Warren, S., and Natarajan, B. (2012). Onboard
tagging for real-time quality assessment of photo-
plethysmograms acquired by a wireless reflectance
pulse oximeter. IEEE Trans. Biomed. Circuits Syst.,
6(1):54–63.
Li, Q., Mark, R. G., and Clifford, G. D. (2008). Ro-
bust heart rate estimation from multiple asynchronous
noisy sources. Physiol. Meas., 29(1):15–32.
Nakajima, K., Tamura, T., and Miike, H. (1996). Monitor-
ing of heart and respiratory rates by photoplethysmog-
raphy using a digital filtering technique. Med. Eng.
Phys., 18(5):365–372.
Pan, H., Temel, D., and AlRegib, G. (2016). Heart-
beat: Heart beat estimation through adaptive track-
ing. In Biomedical and Health Informatics (BHI),
2016 IEEE-EMBS International Conference on, pages
587–590. IEEE.
Petterson, M. T., Begnoche, V. L., and Graybeal, J. M.
(2007). The effect of motion on pulse oximetry
and its clinical significance. Anesth. Analg., 105(6
suppl.):S78–84.
Ram, M., Madhav, K. V., Krishna, E. H., Komalla, N. R.,
and Reddy, K. A. (2012). A novel approach for motion
artifact reduction in ppg signals based on as-lms adap-
tive filter. IEEE Trans Intrum Meas, 16:1445–1457.
Selvaraj, N., Mendelson, Y., Shelley, K. H., Silverman,
D. G., and Chon, K. H. (2011). Statistical Approach
for the Detection of Motion / Noise Artifacts in Photo-
plethysmogram. Conf Proc IEEE Eng Med Biol Soc.,
pages 4972–4975.
Sukor, J. A., Redmond, S. J., and Lovell, N. H. (2011).
Signal quality measures for pulse oximetry through
waveform morphology analysis. Physiol. Meas.,
32(3):369–384.
Temko, A. (2017). Accurate heart rate monitoring during
physical exercises using ppg. IEEE Trans Biomed
Eng., 64(9):2016–2024.
Tobin, R. M., Pologe, J. A., and Batchelder, P. B. (2002). A
BIOSIGNALS 2018 - 11th International Conference on Bio-inspired Systems and Signal Processing
188