http://www.ncbi.nlm.nih.gov/pubmed/3928249
(Accessed: 29 August 2017).
Kong, L., Milbrandt, E. B. and Weissfeld, L. A. (2004)
‘Advances in statistical methodology and their
application in critical care.’, Current opinion in critical
care. Current opinion in critical care, 10(5), pp. 391–4.
Available at:
http://www.ncbi.nlm.nih.gov/pubmed/15385757
(Accessed: 31 August 2017).
Kreke, J. E., Schaefer, A. J. and Roberts, M. S. (2004)
‘Simulation and critical care modeling.’, Current
opinion in critical care, 10(5), pp. 395–8. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/15385758
(Accessed: 31 August 2017).
Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012a)
‘ImageNet Classification with Deep Convolutional
Neural Networks’, pp. 1097–1105. Available at:
https://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-
networks (Accessed: 29 August 2017).
Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012b)
‘ImageNet Classification with Deep Convolutional
Neural Networks’, pp. 1097–1105. Available at:
http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-
networks (Accessed: 31 August 2017).
Lecun, Y. et al. (1998) ‘Gradient-based learning applied to
document recognition’, Proceedings of the IEEE,
86(11), pp. 2278–2324. doi: 10.1109/5.726791.
LeCun, Y. et al. (1989) ‘Backpropagation Applied to
Handwritten Zip Code Recognition’, Neural
Computation, 1(4), pp. 541–551. doi:
10.1162/neco.1989.1.4.541.
Lucas, P. (2004) ‘Bayesian analysis, pattern analysis, and
data mining in health care.’, Current opinion in critical
care, 10(5), pp. 399–403. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/15385759
(Accessed: 31 August 2017).
McGain, F. et al. (2008) ‘Documentation of clinical
review and vital signs after major surgery’, Med J
Aust. Available at:
https://www.mja.com.au/system/files/issues/189_07_0
61008/mcg11494_fm.pdf (Accessed: 28 July 2017).
Morik, K. et al. (2000) ‘Knowledge discovery and
knowledge validation in intensive care.’, Artificial
intelligence in medicine, 19(3), pp. 225–49. Available
at: http://www.ncbi.nlm.nih.gov/pubmed/10906614
(Accessed: 31 August 2017).
Moser, S., Jones, W. T. and Brossette, S. E. (1999)
‘Application of Data Mining to Intensive Care Unit
Microbiologic Data’, Emerging Infectious Diseases,
5(3), pp. 454–457. doi: 10.3201/eid0503.990320.
Nassar, A. P. et al. (2012) ‘Caution when using prognostic
models: A prospective comparison of 3 recent
prognostic models’, Journal of Critical Care, 27(4), p.
423.e1-423.e7. doi: 10.1016/j.jcrc.2011.08.016.
Patel, S. et al. (2012) ‘A review of wearable sensors and
systems with application in rehabilitation’, Journal of
NeuroEngineering and Rehabilitation. BioMed
Central, 9(1), p. 21. doi: 10.1186/1743-0003-9-21.
Pirracchio, R. (2016) ‘Mortality Prediction in the ICU
Based on MIMIC-II Results from the Super ICU
Learner Algorithm (SICULA) Project’, in Secondary
Analysis of Electronic Health Records. Cham:
Springer International Publishing, pp. 295–313. doi:
10.1007/978-3-319-43742-2_20.
Poole, D. et al. (2012) ‘Comparison between SAPS II and
SAPS 3 in predicting hospital mortality in a cohort of
103 Italian ICUs. Is new always better?’, Intensive
Care Medicine, 38(8), pp. 1280–1288. doi:
10.1007/s00134-012-2578-0.
Rajpurkar, P. et al. (2017) ‘Cardiologist-Level Arrhythmia
Detection with Convolutional Neural Networks’.
Available at: http://arxiv.org/abs/1707.01836.
Ribas, V. J. et al. (2011) ‘Severe sepsis mortality
prediction with relevance vector machines’, in 2011
Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE,
pp. 100–103. doi: 10.1109/IEMBS.2011.6089906.
Sierra, B. et al. (2001) ‘Using Bayesian networks in the
construction of a bi-level multi-classifier. A case study
using intensive care unit patients data’, Artificial
Intelligence in Medicine, 22(3), pp. 233–248. doi:
10.1016/S0933-3657(00)00111-1.
Srivastava, N. et al. (no date) ‘Dropout: A simple way to
prevent neural networks from overfitting’, The Journal
of Machine Learning Research. Available at:
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid
=62C00367CD502B74905266851BF65145?doi=10.1.
1.696.4855 (Accessed: 29 August 2017).
Suresh, H. et al. (no date) ‘Clinical Intervention Prediction
and Understanding using Deep Networks’, pp. 1–16.
Available at: https://arxiv.org/pdf/1705.08498.pdf.
Wang, Z. et al. (2016) ‘Representation Learning with
Deconvolution for Multivariate Time Series
Classification and Visualization’. Available at:
http://arxiv.org/abs/1610.07258 (Accessed: 31 August
2017).
Yoon, J. et al. (2016) ‘ForecastICU: A Prognostic
Decision Support System for Timely Prediction of
Intensive Care Unit Admission’, Proceedings of The
33rd International Conference on Machine Learning,
48, pp. 1680–1689. Available at:
http://proceedings.mlr.press/v48/yoon16.html.
Zeiler, M. D. et al. (2010) ‘Deconvolutional networks’, in
2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE, pp.
2528–2535. doi: 10.1109/CVPR.2010.5539957.
HEALTHINF 2018 - 11th International Conference on Health Informatics
470